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Image Reconstruction from Data Acquired With an
X-Ray Computerized Tomographic System Having

Energy-Integrating Detectors
Joseph A. O’Sullivan, Bruce R. Whiting, Donald L. Snyder, and Orville A. Earl

Abstract— Detectors used in modern X-ray tomographic sys-
tems accumulate the energy of the photons sensed. The statis-
tical description of such data departs from the Poisson-process
model often used in developing image-reconstruction algorithms.
Our goal in this brief paper is to review a model for data
produced by an energy integrating detector and then to give
a maximum-likelihood image-reconstruction method consistent
with this model.

Index Terms— tomography, computerized tomography, beam
hardening, image reconstruction

I. INTRODUCTION

Our group’s research on reducing streak artifacts that are
present in X-ray tomographic images when high density metal-
lic objects are present in the body has led to our conclusion that
a physically accurate data model coupled with a reconstruction
algorithm that accommodates the model are crucial for reduc-
ing artifacts to an acceptable level [12], [17]. This has caused
us to examine more closely the models and assumptions that
are used to derive image reconstruction methods [8], [16]. For
similar reasons, other research groups have likewise been moti-
vated to reexamine models for X-ray CT data [3]. This paper is
an expanded version of [9].

That X-ray sources produce polyenergetic photons and that
the constituents of the body have energy dependent attenuation
characteristics have long been recognized. Models describing
these effects are readily available [1], [2], [14]. When devel-
oping image reconstruction algorithms that accommodate these
effects, it is common to assume that the data acquired by the to-
mograph are Poisson distributed [4], [8], [12]. In this instance,
each detected photon is treated as a quantum “event” without
other attributes, and the data are modeled as an accumulation
or counting of events as follows. Let dm denote the data ac-
quired at the mth source-detector position among the M such
positions that are present as the scanner acquires a complete set
of data for forming a tomographic image,

dm =
∫

y∈Ym

∫
E∈Em

N(dy, dE) (1)

for m = 1, 2, · · · , M , where Ym denotes the region of the
measurement or sinogram space, Y , corresponding to the mth
source-detector position, Em is the range of energies that influ-
ence these data, and N(·, ·) is a Poisson counting process [13]
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defined on the sinogram-energy space, Y × E . The mean-value
function of the Poisson process N(·, ·) is

q(y, E) = I0(y, E) exp

[
−
∑
x∈X

h(y|x)µ(x, E)

]
, (2)

for (y, E) ∈ Y × E , where I0 (y, E) is the combined energy-
dependent source flux and detector absorption, X is the pix-
elized image space, h(y|x) is the scanner’s point-spread func-
tion, and µ(·, ·) is the spatially varying, energy-dependent at-
tenuation function that is sought. The data, dm, are Poisson
distributed,

Pr (dm = n) =
Qn

m

n!
e−Qm , (3)

for n = 0, 1, 2, · · ·, where the mean number of detection events,
Qm, is given by

Qm =
∫

y∈Ym

∫
E∈Em

q(y, E)dydE. (4)

The units of E and µ(·, ·) are generally keV and mm−1, respec-
tively. As in [8], we assume that the attenuation function is in
the form of a sum of separable components having nonnegative
factors,

µ (x, E) =
I∑

i=1

µi (E) ci (x), (5)

where I is the number of constituents in the scanned volume,
and the ith constituent has a known attenuation µ i(·), in mm−1,
that depends only on energy, E, and an unknown, relative
partial-density ci(·) that depends only on position, x. We call
functions in this form admissible and denote the set of such
functions by U . Decompositions of this form are discussed by
J. Weaver and A. Huddleston [15] and by J. Williamson, et al.
[17].

II. DATA MODEL FOR ENERGY-INTEGRATING DETECTORS

As noted by Whiting [16], the data acquired by current CT
scanners are not Poisson distributed because they result from
a polyenergetic photon flux that is converted by the X-ray de-
tectors into secondary energy forms (for example, electrons or
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optical photons) that are electronically integrated into an essen-
tially continuous signal that is then sampled and quantized into
a digital value. When the effects of quantization are ignored,
the data, dm, produced by the mth detector are more accurately
modeled in terms of a compound Poisson process as

dm =
∫

y∈Ym

∫
E∈Em

EN(dy, dE), (6)

which replaces the expression for dm in (1). The characteristic
function for dm, defined by

Mdm (jv) ∆= Ē
[
ejvdm

]
, (7)

where Ē [·] is the expectation operator, is readily determined to
be (see eq. (4.8) in [13])

Mdm(jv) = eQm[ME(jv)−1], (8)

where ME(jv) is the characteristic function of the energies
of detected photons. By inverse Fourier transformation of
Mdm (jv), the probability density of dm is given by

pdm(Dm) =
∞∑

n=0

Qn
m

n!
pn⊗

E (Dm)e−Qm , (9)

in which pE(α) is the probability density of photon energies,
and the superscript “n⊗” denotes n-fold autoconvolution. We
note that if each photon incident on the detector contributes unit
energy to the data, then pE(α) = δ(α − 1) and pn⊗

E (α) =
δ (α− n), so that (9) and (3) become equivalent.

It is of interest to introduce the energy spectrum of detected
photons, qm(E), into the data density (9), where

qm (E) =
∫

y∈Ym

q(y, E)dy. (10)

Then,

pE (α) =
qm (α)∫

E∈Em

qm (E) dE
=

qm (α)
Qm

. (11)

Substitution into (9) then yields the following expression for
the probability density of the data, dm:

pdm(Dm) =
∞∑

n=0

1
n!

qn⊗
m (Dm)e−Qm . (12)

The summation in (12) can be thought of as a weighted series
of terms, each term representing the spectrum corresponding
to n total events (formed by n autoconvolutions of the original
spectrum), with a weighting corresponding to the probability
for integer n of a Poisson process of mean Qm.

It is straightforward to compute the probability densities cor-
responding to representative clinical CT scan conditions. Using
available X-ray spectra and material attenuation coefficients,

the spectrum of quanta transmitted through an object and in-
teracting with a detector can be obtained. For a given scan pro-
tocol (tube current, integration time, collimation and active de-
tector area), the total X-ray flux is determined, allowing an es-
timate of the probability density from (12). Fig. 1 shows a rep-
resentative example. In comparing the theoretical model pre-
dictions to experimental data, measurements were performed
on phantom objects of uniform materials constructed in sim-
ple geometries to determine the noise characteristics of clinical
scanners. In these real devices, processes (e.g., electronic noise,
beam hardening corrections, scattered radiation) present in ad-
dition to X-ray quantum noise contribute to signal statistics and
must be included in data analysis. Fig. 1 shows the fit of the
experimental data to the model we have proposed here.

The joint probability density of the data acquired at all M
source-detector positions, d ≡ (d1, d2, · · · , dM), is simply the
product of the individual densities because the distinct source-
detector positions sample from the Poisson process N(·, ·),
which has independent increments. Thus:

pd (D : µ) =
M∏

m=1

pdm (Dm), (13)

where we indicate explicitly that this joint density is a func-
tional of the attenuation µ(·, ·) by virtue of (2), (10), and (12).

III. IMAGE RECONSTRUCTION PROBLEM

The image reconstruction problem is to form an admissible
estimate (i.e., an estimate in the form (5)) of the attenuation
function µ(·, ·) given the data, d. In particular, we seek an esti-
mate µ̂(x, E) of µ(x, E), for each (x, E) ∈ X × E , that max-
imizes the data loglikelihood functional � (µ) = lnpd (D : µ)
subject to the constraint that µ̂(·, ·) ∈ U . From (12) and (13),

µ̂(x, E) = arg max
µ∈U

M∑
m=1

ln

[ ∞∑
n=0

1
n!

qn⊗
m (Dm : µ)

]
, (14)

where qm(Dm : µ) ≡ qm(Dm) is given in (10) with E = Dm.
Direct maximization of this loglikelihood functional is difficult,
so we have developed an iterative approach for producing max-
imizers numerically.

IV. IMAGE RECONSTRUCTION METHOD

Our approach for developing a reconstruction method with
data derived from energy integrating detectors is based on an
expectation-maximization algorithm. Take as the complete data
the photon events incident on each source-detector combina-
tion, including their energies. These form the Poisson process
N(·, ·) with mean-value function q(·, ·) given in (2). The com-
plete data loglikelihood functional is

�cd (µ) =
M∑

m=1

[ ∫
Ym

∫
Em

ln q(y, E)N (dy, dE) − ∫
Ym

∫
Em

q(y, E)dydE

]
.

(15)
Each iteration of the expectation-maximization algorithm re-

quires an expectation step and a maximization step.
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A. Expectation Step

For the expectation step, a current estimate of the attenuation
function µ(·, ·) is used to compute the expected value of the
complete-data loglikelihood functional given the data d m. De-
note by Q

(
µ|µ̂(k)

)
the conditional expectation of �cd (µ) given

the data d ≡ (d1, d2, · · · , dM) and the stage-k admissible esti-
mate µ̂(k)(y, E) of µ(y, E),

Q
(
µ|µ̂(k)

)
= Ē

[
�cd (µ) |d, µ̂(k)

]
. (16)

Then, from (15),

Q
(
µ|µ̂(k)

)
=

M∑
m=1

∫
Ym

∫
Em

[
p
(
y, E : µ̂(k)

)
ln q(y, E : µ)− q(y, E : µ)

]
dydE,

(17)
where p

(
y, E : µ̂(k)

)
is the intensity of the Poisson process

N(·, ·) given d and µ̂. The function p
(
y, E : µ̂(k)

)
that is

needed to complete the definition of the expectation step is de-
rived in the Appendix and is given by

p (y, E : µ) = q(y, E : µ)
pdm (Dm −E : µ)

pdm (Dm : µ)
, (18)

for (y, E) ∈ Ym × Em, in which pdm(Dm : µ) is given in (12)
with its dependence on µ indicated explicitly.

If each photon incident on the detector contributes unit en-
ergy to the data, then pE(α) = δ(α− 1),

pdm (α− 1 : µ) =
α

Qm
pdm (α : µ) , (19)

and

p(y, E : µ) =
α

Qm
q(y, E : µ), (20)

which is the expression for p (y, E : µ) used in the alternating
maximization method developed by J. O’Sullivan and J. Benac
[8] for forming a maximum-likelihood estimate of µ(x, E) un-
der the assumption that sinogram data are Poisson distributed.
The expression (18) is the required modification when an
energy-integrating detector is used.

Note that I. Elbakri and J. Fessler [5] describe an efficient al-
gorithm for computing the likelihood function p dm(E) needed
in the expectation step of the EM algorithm that might be used.
Their method is based on a saddle-point approximation of the
inverse transform of the moment-generating function (8).

B. Maximization Step

Given p (y, E : µ̂), the maximization step is identical to that
by J. O’Sullivan and J. Benac [8]. A key portion of that deriva-
tion is described here.

The maximization of Q(µ|µ̂) over µ is notoriously difficult,
with many approximations proposed in the literature. More
specifically, substitution of q using the form of µ in (5) into
the expression for Q(µ|µ̂) in (17), and dropping terms that do
not depend on {ci(x), i = 1, 2, . . . , I} yields

Q
(
µ|µ̂(k)

)
= (21)

M∑
m=1

∫
Ym

∫
E

[
−p
(
y, E : µ̂(k)

)∑
x∈X

h(y|x)
I∑

i=1

µi(E)ci(x)

− I0(y, E) exp

(
−
∑
x∈X

h(y|x)
I∑

i=1

µi(E)ci(x)

)]
dydE.

The difficulty in the maximization is from the last term. That
term may be rewritten as a perturbation from the previous esti-
mate as

−
∫
Y

∫
E

q(y, E : µ̂(k)) exp

(
−
∑
x∈X

h(y|x)×

I∑
i=1

µi(E)(ci(x)− ĉ
(k)
i (x))

)
dydE. (22)

This term is concave in the {ci(x)}. To obtain an analytic form
for the update, this term is lower bounded by another concave
function of the {ci(x)}. This auxiliary functional is analogous
to the formulation of the expectation-maximization algorithm’s
use of the complete data loglikelihood functional to maximize
the incomplete data loglikelihood functional.

The auxiliary functional may be obtained most simply by in-
troducing the ratio Zi(x)/Zi(x) into the exponent where Zi(x)
is chosen to satisfy

∑
x∈X

h(y|x)
I∑

i=1

µi(E)
1

Zi(x)
≤ 1, (23)

for all (y, E). Then a version of Jensen’s inequality applied to
the concave function−qe−t yields

−
∫
Y

∫
E

q(y, E : µ̂(k)) exp

(
−
∑
x∈X

h(y|x)×

I∑
i=1

µi(E)(ci(x)− ĉ
(k)
i (x))

)
dydE

≥ −
I∑

i=1

∑
x∈X

1
Zi(x)

b̂
(k)
i (x) exp

(
−Zi(x)(ci(x)− ĉ

(k)
i (x))

)
,

(24)
where b̂ is the backprojection of q

b̂
(k)
i (x) =

∫
Y

∫
E

q(y, E : µ̂(k))h(y|x)µi(E)dydE. (25)

Defining â
(k)
i (x) to be the backprojection of p

(
y, E : µ̂(k)

)
(substitute p for q in (25), the maximization step using the aux-
iliary functional becomes simply to maximize

I∑
i=1

∑
x∈X

[
−â

(k)
i (x)ci(x)
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− 1
Zi(x)

b̂
(k)
i (x) exp

(
−Zi(x)(ci(x)− ĉ

(k)
i (x))

)]
. (26)

This maximization is straightforward, yielding

ĉ
(k+1)
i (x) = ĉ

(k)
i (x)− 1

Zi(x)
ln

â
(k)
i (x)

b̂
(k)
i (x)

. (27)

Successive iterates of this algorithm are guaranteed not to de-
crease the loglikelihood functional and, generally, to increase
it. This follows because the maximization step involves the use
of a surrogate function and optimization transfer; see J. Fessler
[6] and K. Lange, et al. [7].

C. The Image Reconstruction Algorithm

Combining the expectation and maximation steps results in
the following image reconstruction algorithm.

step 0. (initialize) Set k = 0, select initial conditions ĉ
(0)
i (x),

x ∈ X , for i = 1, 2, · · · , I. Evaluate

µ̂(0) (x, E) =
I∑

i=1

µi (E) ĉ
(0)
i (x) (28)

and

q̂(0) (y, E) = I0(y, E) exp

[
−
∑
x∈X

h (y |x ) µ̂(0) (x, E)

]
.

(29)
step 1. Substitute µ̂(k) (x, E) into (4) and (10) to obtain

Q̂(k)
m =

∫
y∈Ym

∫
E∈Em

q̂(k)(y, E)dydE (30)

and

q̂(k)
m (E) =

∫
y∈Ym

q̂(k)(y, E)dy. (31)

step 2. Substitute Q̂
(k)
m and q̂

(k)
m (E) into (12) to obtain

p̂
(k)
dm

(Dm) =
∞∑

n=0

1
n!

[
q̂(k)
m (Dm)

]n⊗
e−Q̂(k)

m , (32)

and then evaluate

p̂(k) (y, E) = q̂(k) (y, E)
p̂
(k)
dm

(Dm −E)

p̂
(k)
dm

(Dm)
, (33)

for (y, E) ∈ Ym × Em, and m = 1, 2, · · · , M .
step 3. Evaluate the backprojections

â
(k)
i (x) =

∑
y∈Y

∑
E∈E

h (y|x)µi (E) p̂(k) (y, E) (34)

and

b̂
(k)
i (x) =

∑
y∈Y

∑
E∈E

h (y|x)µi (E) q̂(k) (y, E). (35)

step 4. Update estimates of the relative partial densities,

ĉ
(k+1)
i (x) = ĉ

(k)
i (x)− 1

Zi (x)
ln

â
(k)
i (x)

b̂
(k)
i (x)

. (36)

step 5. Update estimates of the attenuation and intensity func-
tions

µ̂(k+1) (x, E) =
I∑

i=1

µi (E) ĉ
(k+1)
i (x) (37)

and

q̂(k+1) (y, E) = I0(y, E) exp

[
−
∑
x∈X

h (y |x) µ̂(k+1) (x, E)

]
.

(38)
step 5. Check for convergence. Exit if converged. Otherwise,
increment k, k ← k + 1, and return to step 1.

V. DISCUSSION AND CONCLUSIONS

A new iterative algorithm is proposed for transmission to-
mography that takes into account energy-dependent detectors.
X-ray detectors often convert the energy from X-ray photons
into a secondary energy form that is detected. This conversion
is energy dependent. The alternating minimization algorithm
that is described here generalizes the alternating minimization
algorithm derived by O’Sullivan and Benac [8] to accommo-
date energy dependence of X-ray sources and object attenua-
tion by employing a compound Poisson process model. There
are other detector effects that are not included in this model.
For example, detectors that sense a single X-ray photon by pro-
ducing a cascade of secondary photons or electrons might be
modeled as an avalanche process [11] or a filtered Poisson pro-
cess [13]. I. Elbakri and J. Fessler [4] consider such effects for
X-ray tomography, but how significant they are in producing
quantitative image reconstructions remains an area for future
exploration.

Equation (32) in Step 2 of the reconstruction algorithm re-
quires an infinite summation of weighted autoconvolutions, so
some type of approximation is required to perform a reconstruc-
tion using the algorithm. Truncating the summation to a finite
number of terms is one possible approach, but further study will
be needed to relate the number of terms retained to the accu-
racy of a resulting reconstruction. Another alternative is to use
a saddle-point approximation along the lines in [5].

The reconstruction we have described yields an estimate of
each of the I components in (5) from data in a single sino-
gram. The accuracy of the estimates will be influenced by the
number of components, the energy spectrum of the source, the
energy-dependence of the components, and other factors. The
reconstruction problem is underdetermined even when there is
only a single component, so some form of regularization is in-
corporated in an implementation. Appropriate forms of regu-
larization for reconstructing multiple components from a single
sinogram remains an area for further study. An alternative is to
acquire sinograms at multiple source-energy settings. Prelim-
inary results along this line are presented by J. O’Sullivan, J.
Benac, and J. Williamson [10].

Experiments are planned to assess the importance of account-
ing for this energy dependence in practical situations.
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VII. APPENDIX: DERIVATION OF (17) AND (18)

From (4), (15), and (16),

Q
(
µ|µ̂(k)

)
=

M∑
m=1

Ē
[
�m|d, µ̂(k)

]
−Qm, (39)

where

�m =
∫
Ym

∫
Em

ln q (y, E)N (dy, dE). (40)

To evaluate the conditional expectation of �m, consider the joint
characteristic function of dm and �m, defined by

M (jvd, jv�) = Ē
[
ej(vddm+v��m)

]
. (41)

If n is the number of detection events in Ym × Em, then

Ē
[
ej(vddm+v��m) |n] =[ ∫

Ym

∫
Em

q(y,E)
Qm

ej(vdE+vl ln q(y,E))dydE

]n
(42)

because the event locations, (y, E), occur as if they are inde-
pendent and identically distributed random variables with prob-
ability density q(y, E)/Qm. Then

M (jvd, jv�)

=
∞∑

n=0

Qn
m

n! e−Qm

[ ∫
Ym

∫
Em

q(y,E)
Qm

ej(vdE+v� ln q(y,E))dydE

]n

= exp

[
−Qm +

∫
Ym

∫
Em

q (y, E) ej(vdE+v� ln q(y,E))dydE

]
.

(43)
The conditional expectaton Ē [�m|dm = Dm] can be expressed
as

Ē [�m |dm = Dm ]

=

∞∫
−∞

Lpdm,lm(Dm,L)dL

∞∫
−∞

pdm,lm(Dm,L)dL

=

∞∫
−∞

∂M(jvd,jv�)
∂jv�

|v�=0e−jvd Dmdvd

∞∫
−∞

M(jvd,jv�)|v�=0e−jvdDmdvd

=

∞∫
−∞

[ ∫
Ym

∫
Em

q(y,E) ln q(y,E)ejvdEdydE

]
M(jvd,0)e−jvdDmdvd

∞∫
−∞

M(jvd,0)e−jvdDm dvd

.

(44)
After inverse Fourier transformation, the coefficient of
ln q (y, E) in the numerator of this last expression is seen to
be

p (y, E) = q (y, E)
pdm (Dm − E)

pdm (Dm)
, (45)

which is (18). Equation (17) results when µ is replaced by µ̂ (k)

and (44) is substituted into (39).
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Fig. 1. Theoretical and experimental probability density functions. Abscissa
is an arbitrary energy scale, and the ordinate is a probability density value. The
solid line represents the probability density for the signal corresponding to that
in a 120 kVp X-ray beam passing through 300 mm of polymerized methyl-
methacrylate, PMMA, with tube current of 150 mA, 1 second gantry rotation,
and 1 mm collimation in a Siemens Somatom Plus 4 scanner, corresponding
to an incident exposure of 534,000 quanta per measurement. Experimental
points (‘o’) are relative frequencies of measurements from detectors located
in rays passing through 300 mm chords (total attenuation = 6.5) of a PMMA
cylinder.

FIGURE CAPTION

Theoretical and experimental probability density functions.
Abscissa is an arbitrary energy scale, and the ordinate is a prob-
ability density value. The solid line represents the probabil-
ity density for the signal corresponding to that in a 120 kVp
X-ray beam passing through 300 mm of polymerized methyl-
methacrylate, PMMA, with tube current of 150 mA, 1 sec-
ond gantry rotation, and 1 mm collimation in a Siemens So-
matom Plus 4 scanner, corresponding to an incident exposure
of 534, 000 quanta per measurement. Experimental points (‘o’)
are relative frequencies of measurements from detectors located
in rays passing through 300 mm chords (total attenuation = 6.5)
of a PMMA cylinder.


