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Compound-Angle Joinery
Donald L. Snyder
Bill Gottesman1

1 Introduction	

In a previous note, one of us (DLS) wrote about compound-angle joinery and stat-
ed, without explanation, the mathematical expressions which specify the blade tilt
and miter-gauge setup angles on a table saw used to cut the parts of a compound-
angle joint [1].  The same expressions apply for other tools used to cut the joints,
such as miter saws, scroll saws, and even hand saws.  For completeness, the math-
ematical basis for the expressions is developed in this note.  In addition, the earlier
Frink computer-procedure [1] for calculating the setup angles is updated to include
correct formulas for setup angles and for not just compound miter-joints but also
compound butt-joints, and the visual display of results on portable devices such as
smart phones and tablets is improved.  The mathematical basis for compound-angle
joinery is developed in two ways.  For the first, in Section 3, plane trigonometry,
vector notation and rotation matrices are used.  For the second, in Section 4,
spherical trigonometry is used following insights of Bill Gottesman.

In  Section  1.1  we  give  some  examples  of  objects  made  using  compound-
angle joinery.  Several angles that occur in the joinery are identified in Section 2.
The development of the setup angles by using plane trigonometry, vectors and ro-
tation matrices is in Section 3.  The development using spherical trigonometry is in
Section 4.  Results are summarized in Section 5, and computer implementations
are in Section 6.  Section 7 has four examples, and 8 lists cited references.

1.1 Examples	of	objects	exhibiting	compound-angle	joinery	

Compound-angle joinery is an integral feature of diverse objects.  Examples of
closed forms shown in Figs. 1-4 illustrate the wide range of objects where this join-
ery is  encountered.   By a ‘closed form’ is  meant a multisided object  in  which the
multiple sides are connected to form an enclosure, such as a box.

1 Bill Gottesman of Burlington, Vermont, contributed the ideas and material for the section
in which spherical trigonometry is used to develop expressions for the setup angles needed
for compound-angle joinery.
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Figure 1.  Octagonal jewelry box with removable shelf
insert.  Made by Vic Barr using maple and cherry
woods.  The eight sides are at 90° to the base.

Figure 2.  Four-, seven- and six-sided closed-form objects
involving compound-angle joinery.

Figure 3.  Hexagonal bowl involving compound-angle
joinery.  Each of the six sides slope outward at 60° from the base.
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Figure 4.  Four sided sea chest having sides
that slope inward at 82° from the base.

There are also open forms that involve compound-angle joinery.  These are gener-
ally not enclosures but after twists and turns may become closed.  Examples are in
Fig. 5.  Ceiling trim often winds around the ceiling eventually closing on itself like a
snake eating its own tail.

Figure 5.  Compound-angle joinery in ceiling and fireplace-mantel moldings

The examples given above of closed forms involve multiple compound-angle joints
that are identical.   Closed forms that do not have repeated compound-angle joints
are also possible.  We treat these by considering each joint separately as an open
form once the basic shape is selected.

2 Compound	joints	and	cut	planes	
Compound-angle joints are characterized by two important angles and by planes
that define how the parts are cut so they can be joined to form the compound joint.
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2.1 Angles	that	characterize	a	compound-angle	joints	
Illustrated in Fig. 6 are two components of a closed or open form that come togeth-
er in a compound-angle joint.  Both components are assumed to rest on the XY-
plane of a three-dimensional coordinate system2, with the resting edge of one com-
ponent (component 1) aligned with Y-axis and having a slope of S degrees meas-
ured (counterclockwise) from the XY-plane.  The origin of the coordinate system is
located at the point in the XY-plane where the two components come together.  The
resting edges of the two components meet an angle π  in the XY-plane.   For  a
closed form having the shape of an N-sided regular polygon in the XY-plane,

∋ (2 *180 /N Nπ < , ν  degrees.  For example, a four-sided square box will have

2 *180 / 4 90π < <ν ν  regardless of any slope the sides may have, the six-sided bowl
of Fig. 3 has a hexagonally shaped base with 4 *180 / 6 120π < <ν ν , and the seven-
sided heptagon-vase of Fig. 2 has 5 *180 / 7 128.6π < ≡ν ν .  Generally, 0 180π′ ′ ν .

There is another angle that is important in describing the joined components
of Fig. 6.  It is called the “dihedral angle.”  The dihedral angle can be measured by
constructing two lines, one in the face of each component.  The line in a face is
constructed so that it is perpendicular to the mating line where the two faces join.
The two constructed lines are positioned to meet at common point anywhere along
the mating line. The smallest angle between the two lines constructed in this way is
the dihedral angle (also called the plane angle [11]).

Figure 6.  Compound-angle joint connecting two components
of a closed or open form

2 A coordinate system with a right-hand convention is used.  Angles measured counter-
clockwise are positive and clockwise negative.
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If 90S < ν , the two components in Fig. 6 are perpendicular to the XY-plane, and the
dihedral angle equals π .  Generally, 0 180S′ ′ ν , and the dihedral angle is smaller
than π  if 90S ÷ ν .

The dihedral angle is determined in the following way using plane trigonome-
try, vectors and rotation matrices.  Define unit vectors along the coordinate axes as

1
0
0

Xe
 
 <
 
 

θ
,

0
1
0

Ye
 
 <
 
 

θ
,  and

0
0
1
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 <
 
 

θ
.

Also, define rotation matrices

∋ (
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For example, the operation ∋ (X XR vι
θ
 rotates the vector T

X Y Zv v v v<   
θ

 through
an angle Xι  around the X-axis to become the vector

∋ (
1 0 0
0 cos sin cos sin
0 sin cos sin cos

X X

X X X X Y Y X Z X

X X Z Y X Z X

v v
R v v v v

v v v
ι ι ι ι ι

ι ι ι ι

    
    < , < ,    

∗          

θ
 . (1)

Now, consider unit vectors that are perpendicular to each of the two components in
Fig. 6.  A unit vector that is perpendicular to the showing face of the component
aligned along the Y-axis (labeled component 1) results by a counterclockwise rota-
tion around the Y-axis of the unit vector along the Z-axis, Zeθ , through the angle of
the slope, S , of the face

∋ (1

sin
0

cos
Y Z

S
u R S e

S

 
 < <
 
 

θθ
 . (2)

For example, if 90S < ν , component 1 is perpendicular to the XY-plane, and 1 Xu e<
θθ

.
A unit vector that is perpendicular to the showing face of the other compo-

nent (labeled component 2) results by a counterclockwise rotation of 1uθ  through an

angle of 180 π,ν  around the Z-axis:
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∋ (2 1

cos sin 0 sin cos sin
180 sin cos 0 0 sin sin

0 0 1 cos cos
Z

S S
u R u S

S S

π π π
π π π π

, , ,     
     < , < , <
     
     

ν
θ θ

 . (3)

The angle between these unit vectors is 180 diheπ,ν , where diheπ  is the the dihedral
angle, so3

∋ ( 2 21 2

1 2

cos 180 cos sin cosdihe
u u S S
u u

π π, < < , ∗ν

θ θ
φ

θ θ . (4)

Since ∋ (cos 180 cosdihe diheπ π, < ,ν , we have

2 2cos cos sin cosdihe S Sπ π< , . (5)

For example, if 90S < ν  and 90π < ν , ∋ (cos 0dihedπ < , which implies that 90dihedπ < ν .
This may also be confirmed by examining the two components in Fig. 6.  When

90S < ν  and 90π < ν  the two components are both perpendicular to the XY-plane and
to each other, so 90dihedπ < ν .  Generally, 0 180dihedπ′ ′ ν .

It will be convenient for specifying setup angles for cutting compound miter-joints
to have an expression for half the dihedral angle, / 2diheπ .   One  expression  is

∋ ( 2 2/ 2 1 / 2 arccos cos sin cosdihe S Sπ π < ,  .   An  alternative  expression  is  obtained  by

using the following trigonometric identity for half angles: ∋ ( ∋ (2cos 2cos / 2 1ε ε< , ,
which implies from Eqn. (5) that

∋ ( ∋ ( ∋ (2 2 2 2 2 22cos / 2 1 2cos / 2 1 sin cos 2cos / 2 sin 1dihe S S Sπ π π , < , , < ,  . (6)

Thus,

∋ ( ∋ (2 2 2cos / 2 cos / 2 sindihe Sπ π< . (7)

Since 0 / 2 90dihedπ′ ′ ν , 0 / 2 90π′ ′ ν  and 0 180S′ ′ ν , ∋ (0 cos 1dihedπ′ ′ ,

∋ (0 cos / 2 1π′ ′  and 0 sin 1S′ ′ .  Consequently,

∋ ( ∋ (cos / 2 cos / 2 sindihe Sπ π< , (8)

and

∋ (1 arccos cos / 2 sin
2 dihe Sπ π <   . (9)

3 The ‘dot product’ and ‘cross product’ notation is summarized in Section 9.1.
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It will also be convenient to have an expression for dihedπ  in addition to the one in

Eqn. (8) for the half angle.  One such expression is obtained by squaring both sides
of Eqn. (8) and using the half-angle identity ∋ ( ∋ (2cos / 2 1 cos / 2ε ε< ∗  twice to obtain

∋ ( 2 2cos cos sin cosdihed S Sπ π< , . (10)

2.2 Cut	planes	

Compound-angle joints are commonly formed using either a miter joint or  a butt
joint.  The appearance of these configurations as seen in the XY-plane is shown in
Fig. 7.

Figure 7.  Miter and butt joints viewed in the XY-plane

The two components of the compound-angle joint are cut to form these configura-
tions.  The complexity when cutting them arises because cutting involves planes
that are not parallel to the XY-plane.  The principal change is in the angle appearing
to join the components.  It is here that the dihedral angle becomes important.

Shown in Figs. 8 and 9 are the planes that a saw blade4 must occupy to form the
mating parts.

4 Here, we think of the saw blade as having a very narrow kerf.  Otherwise, the cut plane
contains only one side of the blade.
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Figure 8.  Cutting plane to form a miter joint

Figure 9.  Cutting plane for a butt joint

The cutting plane for a miter joint divides in half both the angle π  and the dihedral
angle diheπ  of the compound-angle joint, whereas the cutting plane for a butt joint is
oriented so as to contain the show face of component 2 of the compound-angle
joint.
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3 Development	of	setup	angles	using	plane	trigonometry,	vectors	and	
rotation	matrices	

Here is what we envision needs to happen.  We consider that the imaginary cut
plane is attached to component 1.  The showing face of this component (or of the
board or material that is to become component 1) with its associated cut plane
needs to be oriented on the surface of the table saw (or other cutting machine) so
that the cut plane passes through the plane of the saw blade.  This requires that
the saw blade be tilted and the miter gauge be adjusted to match the orientation of
the cut plane.  So, we rotate component 1 and its attached cut plane clockwise
about the Y-axis through the angle S.  Component then lies on the surface of the
table saw, and the rotated unit vector 1uθ  will then equal the unit vector Zeθ  along

the Z-axis.  The cut plane will be at an angle to the surface of the table saw of
/ 2dihedπ  for a miter joint or angle dihedπ  for a butt joint.  We call the angle that the

cut plane makes with the surface of the table-saw surface the blade angle, and de-
note it by BA°,  measured  in  degrees.   Thus,  by  combining  Eqns.  (8)  and  (10),
measured counterclockwise from the surface of the saw table, the blade angle BA°
satisfies

∋ (
∋ (

2 2

cos / 2 sin , miter joint
cos

cos sin cos , butt joint
o

S
BA

S S

π

π


< 
 ,

(11)

The blade angle 90o oBA <  corresponds to the blade or cut plane being perpendicular
to the surface of the saw table.  We use the term blade tilt, denoted by BT°, meas-
ured positive counterclockwise, as the angle of the blade or cut plane measured
from 90° to the table-saw surface; then, 0o oBT <  corresponds to a blade or cut
plane that is perpendicular to the saw’s surface.  Thus, 90o o oBT BA< , , the nega-

tive complement of the blade angle. Since this implies that ∋ ( ∋ (cos sino oBA BT< , ,

the blade tilt-angle satisfies

∋ (
∋ (

2 2

cos / 2 sin , miter joint
sin

cos cos sin , butt joint
o

S
BT

S S

π

π

 ,
< 
 ,

(12)

It is helpful to be aware of both the blade-tilt angle oBT  and blade angle oBA  be-
cause each can be useful.  These angles are displayed in Figure 10.  The tilt-angle



Created: 11 August 2014 Last Revision: 4 December 2015

10

Figure 10.  Blade and blade-tilt angles

is useful because this is the angle displayed on the angle scale that is built into
saws made by many manufacturers.  However, these scales are coarse, making
precise settings difficult.  Instead of using the saw’s angle scale when more precise
settings are needed, it is convenient to set an auxiliary tool, such as a bevel gauge,
to the desired blade angle oBA  using an accurate protractor.  The bevel gauge is
then placed on the table and the blade adjusted to match its angle.  An alternative
that can be even more precise is to print onto regular printer paper a right triangle
with one of the acute angles being oBA .  The printer paper is then glued to a heavy
card stock backing, which is cut to form a triangular template that is used to set the
blade to angle oBA .

A rotation of the combined component 1 and its cut plane around the Z-axis is also
needed to bring the cut plane into the plane of the tilted saw blade.  That angle is
the required miter-gauge setting.  This we identify in the following way.  A unit vec-
tor is constructed along the line where the two components meet.  This unit vector
is rotated clockwise through an angle S around the Y-axis along with component 1
and its attached cut plane.  The resulting vector is then rotated around the Z-axis
through an angle that yields a vector with an X component of zero.  The angle re-
quired to accomplish yields the miter-gauge angle.

The vector that results by forming the cross product between 1uθ  and 2uθ ,



Created: 11 August 2014 Last Revision: 4 December 2015

11

∋ (1 2
2

sin sin cos
cos sin cos sin cos sin

sin sin
dihed

S S
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S

π
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, 
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θθ θ
, (13)

lies in the cutting plane (for both miter and butt joints) along the mating line of
components 1 and 2; nθ  is a unit vector that lies along the mating line.  Clockwise
rotation of this vector about the Y-axis through angle S yields

∋ ( 1 2

2

2 3

2 2

cos 0 sin sin sin cos
0 1 0 cos sin cos sin cos

sin 0 cos sin sin

sin sin cos sin sin
cos sin cos sin cos

sin sin cos sin sin cos

sin sin
cos

Yw R S u u

S S S S
S S S S

S S S

S S S
S S S S

S S S S

S

π
π

π

π π
π

π π

π

< , ≥  

, ,   
   < , ,
   
   

 , ,
 < , , 
, ∗  

,
< ,

θ θ θ

2 2
sin cos sin cos .

sin sin cos sin sin cos
S S S S

S S S S
π

π π

 
 ,
 
, ∗ 

(14)

The vector wθ  is in the XY-plane aligned along the mating line of the two compo-
nents, as shown in Figure 11 for component 1.

Figure 11.  Component 1 positioned flat on the XY-plane



Created: 11 August 2014 Last Revision: 4 December 2015

12

We now seek the angle Zε  such that ∋ ( 0Y Z Ze R wε <
θ θ

φ .  For this angle, the vector

∋ (Z ZR wε
θ
, and therefore the cut plane, is perpendicular to the Y-axis, as shown in

Figure 12.

Figure 12.  Component 1 rotated

   The rotation around the Z-axis yields

∋ (
2 2

cos sin 0 sin sin
sin cos 0 cos sin cos sin cos

0 0 1 sin sin cos sin sin cos

Z Z

Z Z Z Z

S
R w S S S S

S S S S

ι ι π
ε ι ι π

π π

,  , 
   < , ,   

, ∗    

θ
. (15)

Setting the Y component of the resulting vector equal to zero yields

∋ (sin sin sin cos cos sin cos sin cosZ ZS S S S Sε π ε π< , ∗ .

Thus,
∋ (1 cos cossintan

cos sin
Z

Z
Z

Sπε
ε

ε π
∗

< < , . (16)
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We now use the half-angle formulas ∋ ( ∋ (sin 2sin / 2 cos / 2π π π<  and

∋ (21 cos 2cos / 2π π∗ <  to obtain

∋ (
costan

tan / 2z
Sε

π
< , . (17)

The miter-gauge angle5, shown as oMG  in Fig. 12, is given in terms of Zε  by

90o o
ZMG ε< ∗ , which can be less or greater than 90° depending on the sign of Zε .

Thus, from Eqn. (17)

∋ ( ∋ ( ∋ (tan / 21tan tan 90
tan cos

o o
Z

Z
MG

S
π

ε
ε

< ∗ < , < . (18)

Care is needed with the inverse tangent-function when determining the miter-
gauge angle with this expression.  The version of the inverse tangent-function to be
used is:

∋ (∋ (arctan2 tan / 2 ,cosoMG Sπ< , (19)

where

∋ (

∋ (
∋ (
∋ (

arctan / , 0
arctan / 180 , 0, 0
arctan / 180 , 0, 0arctan2 ,
90 , 0, 0
90 , 0, 0

undefined, 0, 0

o

o

o

o

y x x
y x y x
y x y xy x

y x
y x
y x

 =


∗ ″ ;
 , ; ;< 

= <
, ; <

< <

(20)

Expressions for the blade and miter setup angles for compound-angle joints are de-
veloped in this section using plane trigonometry, vectors and rotation matrices.
Eqn. (12) is the expression for the blade-tilt angle, and Eqn. (18) is for the miter-
gauge angle.  In each of these expressions, the angle π  is the angle in the XY-
plane between the two components forming the compound-angle joint, as shown in

5 Note here that the miter-gauge angle oMG  is measured as an angle about the Z-axis, with
90o  corresponding to the miter gauge set perpendicular to the plane of the cutting blade.
The scale on miter-gauge tools are often marked with 90o  corresponding to perpendicular
to  the  cutting  blade  and,  further,  the  scale  is  marked  symmetrically  either  side  of 90o .
Care is therefore needed when converting oMG  into scale readings.
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Figure 6.  Expressions for the setup angles are developed in another way in the
next section.

4 Development	of	setup	angles	using	spherical	trigonometry	
Bill Gottesman formulated the ideas for this alternative development by using
spherical trigonometry.  Bill routinely uses spherical trigonometry for his designs of
novel sundials, and the motivation for pursuing this development originated from a
conversation between the authors at the Annual Conference of the North American
Sundial Society held in Indianapolis, IN, in August 2014.  We offer both the devel-
opment of the previous section based on plane trigonometry and the development
of this section using spherical trigonometry because each conceptualization pro-
vides its own distinct insights that may be helpful to others interested in compound-
angle joinery.

Spherical trigonometry plays an important role in many applications, including nav-
igation, astronomy, and surveying.  We will indicate its use in compound-angle
joinery.  First some terminology.  A circle is formed at the intersection of a plane
with the surface of a sphere.  Such a circle is called a great circle when the inter-
secting plane passes through the center of the sphere; otherwise it is called a small
circle.  For example, the equator is a great circle on the earth’s surface (when the
earth is approximated as a sphere), dividing the earth into its northern and south-
ern hemispheres.  Great circles partition the earth into zones of longitude, and
small circles partition it into zones of latitude.  Spherical trigonometry deals with
polygonal shapes that occur on the surface of a sphere when multiple great circles
intersect.   As seen in Fig. 10, three great circles can intersect to form a spherical

Figure 13.  Spherical triangle
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triangle.  Four can form a spherical square, five a spherical pentagon, etc.  Spheri-
cal pentagons and hexagons are the shapes seen on the surface of the soccer ball
in Fig. 11.  Three planes intersecting to form a spherical triangle can help to explain
table-saw setup angles when forming objects requiring compound angle joinery.

Fig. 10 shows three great circles that intersect to form a spherical triangle with
vertices labeled A, B and C.  The angle C-A-B at vertex A is also referred to as the
angle A, which is measured in angular units of degrees or radians; likewise for the
angles at vertices B and C.  The three sides of the spherical triangle are also meas-
ured in angular units.  The side opposite of the vertex A is labeled a.  The size of a
is that of the angle B-O-C.  Similarly, the sizes of the sides labeled b and c are
those of the angles A-O-C and A-O-B, respectively.  A plane that is tangent to the
sphere at the point of vertex A is perpendicular to the radial line O-A.  Therefore,
any line in that plane which passes through the point of tangency is perpendicular
to that radial line.  In particular, consider two lines in the tangent plane, one that is
also in the plane defined by A-O-B and the other in the plane defined by A-O-C.
The angle between these lines is the dihedral angle of the two intersecting planes
containing A-O-B and A-O-C.  Thus, the angle A associated with vertex A is the di-
hedral angle of the two planes that intersect along the radial line O-A.

Spherical trigonometry deals with relationships between the six angles A, B, C, a, b
and c.  Here, we summarize these relationships found in standard textbooks [8, 9,
11] and many websites [7, 10].  The fundamental equations, called the law of co-
sines, are:

Figure 14.  Soccer ball
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cos cos cos sin sin cos

cos cos cos sin sin cos

cos cos cos sin sin cos .

< ∗

< ∗

< ∗

a b c b c A

b a c a c B

c a b a b C

(21)

Six angles are associated with any spherical triangle.  These fundamental equations
permit the determination of all six by knowing any three of them.  Manipulation of
these fundamental equations yields:

cos cos cos sin sin cos

cos cos cos sin sin cos

cos cos cos sin sin cos .

< , ∗

< , ∗

< , ∗

A B C B C a

B C A C A b

C A B A B c

(22)

Daniel Wenger gives a derivation of the law of cosines by using the rotation matri-
ces of Section 2.1.  Many other relationships can be derived from the law of cosines
by using trigonometric identities [8-11].

4.1 Placing	a	compound-angle	joint	in	the	geometry	of	spherical	trigonome-
try	

Figure 15.  Initial geometry

Shown in Figure 15 are portions of planes containing two components that will form
a compound-angle joint once they are tilted through an angle S ν .  They are pres-
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ently oriented 90o  to the XY-plane containing the equatorial great circle and making
an angle π  to one another.  The center of the sphere is located at the point labeled
O in the XY-plane where the two component planes intersect.  A point labeled P lies
1 unit from O along the Z-axis.  Now suppose the two components Figure 15 are
tilted by an angle S  measured from the XY-plane,  as  shown  in  Figure  16.   The
point P is split into two reference points, labeled P’ and P’’, with each moving in
place on its respective component through 90 S,ν ν  degrees as the components are
tilted through oS  degrees.  The tilted components are then extended until they in-
tersect and form a dihedral angle equal to dihedπ .

Figure 16.  Components tilted

Figure 17 shows component 1 resting on the surface of a table saw and resting
against a miter gauge.  The gauge on the left is set at 90o oMG < , and the one on
the right is set at an angle oMG  so that the line where the two components are to
be joined is aligned with the cutting line of the saw blade.
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Figure 17.  Component 1 resting on the surface of a table saw against a miter gauge

Important arcs that are segments of great circles are shown in Figure 16.  These
form a spherical triangle with vertices P-Q-P’.   The arc angle p is the complement
of the miter-gauge angle oMG  for making compound-angle joints, and the vertex
angle at Q is the blade angle oBA  for the compound miter- and butt-joints.  These
angles can be determined from the spherical triangle P-Q-P’ by using the law of co-
sines.

In the spherical triangle P-Q-P’, angles at the vertices are ∋ (180 / 2oP π< , ,

/ 2dihedQ π< , and ' 90oP < .  Also, the arc P-P’, which we label q, equals 90o oS, .

From Eqn. (20) for spherical triangles, the angle Q satisfies

cos cos cos ' sin sin ' cosQ P P P P q< , ∗ .

which becomes

∋ ( ∋ ( ∋ ( ∋ ( ∋ ( ∋ (
∋ (

cos / 2 cos 180 cos 90 sin 90 / 2 sin 90 cos 90

cos / 2 sin .

o o o o o
dihed S

S

π π π

π

< , , ∗ , ,

<
  (23)

This is the same result as in Eqn. (8).  It then follows that the blade angle oBA  for
compound-angle miter- and butt-joints is given by
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∋ (
∋ (

2 2

cos / 2 sin , miter joint
cos

cos sin cos , butt joint
o

S
BA

S S

π

π


< 
 ,

(24)

This is the same as Eqn. (11).  To determine the arc P’-Q, which we label p, we
again use the cosine law, Eqn. (21), to obtain

cos cos 'cos sin ' sin cosP P Q P Q p< , ∗ .

Thus,

∋ ( ∋ ( ∋ ( ∋ ( ∋ (
∋ (

cos 90 / 2 cos 90 cos / 2 sin 90 sin / 2 cos

sin / 2 cos .
dihed dihed

dihed

p

p

π π π

π

, < , ∗

<

ν ν ν

(25)

The miter-gauge angle for a compound-angle joint is equal to the complement of
the arc-angle p, so

∋ ( ∋ ( ∋ (
∋ (

sin / 2
cos 90 sin

sin / 2
o o o

dihed
MG MG

π
π

, < < . (26)

This is an alternative expression for the miter-gauge angle from that in Eqn. (18).
To see that the two expressions yield identical results requires some manipulations
using trigonometric identities.  Start by squaring Eqn. (26) and using Eqn. (23) to
get

∋ ( ∋ ( ∋ (
∋ (

∋ (
∋ (

2 2 2
2 2

2 2 2 2

sin / 2 cos / 2 cos
cos 1 sin 1

1 cos / 2 sin 1 cos / 2 sin
o o S

MG MG
S S

π π
π π

< , < , <
, ,

.

Then,

∋ (
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∋ (
∋ (2 2 2

2
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sin sin / 2 tan / 2
tan

cos / 2 cos coscos

o
o

o
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S SMG
π π

π
< < < .

The square root then shows that Eqns. (26) and (18) are equivalent expressions for
the miter-gauge angle for forming a compound-angle joint.

5 Summary	of	Results	

Assume that the two components of a compound-angle joint meet at an angle π  in
the XY-plane.  A special case arises when the components are part of a box whose
shape in the XY-plane is a regular polygon (eg. square, hexagon) having N sides;
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then ∋ (180 2 /N Nπ < ,ν .  The miter-gauge angle MG ν  is referenced to be 90ν  when it

is perpendicular to the plane of the cutting blade, and the blade-tilt angle BT ν  is
referenced from the XY-plane (surface of the saw table).  Assume that the compo-
nent parts slope S ν  from the XY-plane.  Then, the blade-tilt angle satisfies

∋ (
∋ (

2 2

cos / 2 sin , miter joint
sin

cos cos sin , butt joint.
o

S
BT

S S

π

π

 ,
< 
 ,

(27)

The dihedral angle dihedπ  of the compound-angle joint is equal to 2 *BAν  for a miter

joint and BAν  for a butt joint.  The miter-gauge angle satisfies
∋ (tan / 2

tan
cos

oMG
S

π
< , (28)

which is Eqn. (18).  Alternatively, and equivalently, the miter-gauge angle also sat-
isfies
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which is Eqn. (26).  For regular polygonal boxes having N sides, ∋ (180 2 /o N Nπ < , ,
these expressions become
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and
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or, alternatively
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where / 2 o
dihed BAπ <  for a miter joint in Eqn. (29).
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6 Computer	Implementations	

6.1 Internet	Implementations	
A number of Internet sites provide interactive calculators that produce values for
saw setup angles for compound-angle joinery.  References [3] and [4] are exam-
ples.

6.2 Frink	Implementation	
FRINK is a scientific programming language that is useful for creating applications
that run on many devices such as smart-phones (including Android, iPhone), Win-
dows, MacOS, Linux, and others.  It was created and is maintained by Alan Eliasen
and made available for free on Google’s app website (Google Play) and via Eliasen’s
website at http://futureboy.us/frinkdocs/, which also has user documentation and
many example applications.  The Appendix has a listing of a FRINK procedure for
calculating and displaying table-saw setup-angles for compound-angle joints for
boxes.  A screen shot of the displayed results when run on an Android smart-phone
for a box with 7N <  sides and a slope of 83S < ν , which are the parameters for the
heptagon vase displayed in Figure 2, is in Figure 18.

Figure 18.  Screen shot from an Android smart-phone showing the setup angles for making
the  heptagon vase of Fig. 2
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7 Examples	

Table 1. Examples (side slope S is measured from the saw table surface, blade tilt BT is
measured from the perpendicular to the saw table surface, and miter-gauge angle MG is
measured from the plane of the saw blade)

number
of sides

N

component
angle

180 ( 2) /N Nπ < ,ν ν

slope
of sides,

S ν

miter-
gauge
angle
MG ν

miter
joint
saw-

blade tilt
BT ν

butt joint
saw-

blade tilt
BT ν

4 90° 90° 90° -45° 0
4 90° 98° 97.9° -44.5° 1.1°
6 120° 30° 63.4° -14.5° 61.0°
7 128.6° 83° 86.6° -25.5° 39°

8 References	

8.1 References	related	to	compound-angle	joinery	
1. D. L. Snyder, Cutting Compound Miters on a Table Saw,

http://dls-website.com/documents/WoodworkingNotes/Compound%20Miters.pdf

2. Greg Kimnach, Woodworking – compound miter angle tutorial.  This contains
a short explanation of saw setup angles.  It is available as an Internet docu-
ment at
http://kimnach.org/woodworking/Compound%20miters/compoundangle.htm.

3. SBE Builders, Development of rake Crown Molding Miter Angles Using Geom-
etry.  This Internet site contains a discussion of compound-angle joinery for
crown molding.  It is available at http://www.sbebuilders.com/crown/.
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http://www.blocklayer.com/compoundmitereng.aspx.

8.2 References	related	to	spherical	trigonometry	
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Rotation Matrices.  Available on the Internet at
http://www.wengersundial.com/new/resources/Mathematics/SpherTrig.pdf.

8. Daniel A. Murray, Spherical Trigonometry, Longmans, Green and Co., 1908.
This is available as an Internet Archive Organization eBook at
https://archive.org/details/sphericaltrigono00murrrich.

9. I. Todhunter, Spherical Trigonometry: For the Use of Colleges and Schools,
With Numerous Examples,  McMillan  and  Co.,  1886.   This  is  available  as  a
Project Gutenberg eBook at http://www.gutenberg.org/files/19770/19770-
pdf.pdf.

10.Spherical Trigonometry, an Internet Wikipedia resource
http://en.wikipedia.org/wiki/Spherical_trigonometry

11.A. Albert Klaf, Trigonometry Refresher, Dover Publications Inc., 2005.  This
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9 Appendices	

9.1 Notation	
Two forms of multiplication for vector-valued quantities are used in development.
These are defined as follows.  Let aθ  and b

θ

 be three-dimensional vectors,

1 1

2 2

3 3

, and
a b

a a b b
a b

   
   < <   
      

θθ
.

The dot product, denoted by a b
θθ

φ , is a number defined by

1 1 2 2 3 3a b a b a b a b< ∗ ∗
θθ

φ .

The cross product, denoted by a b≥
θθ
, is a vector defined by
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2 3 3 2

3 1 1 3

1 2 2 1

a b a b
a b a b a b

a b a b

, 
 ≥ < , 

,  

θθ
.

Discussion of these products and some of their properties is given at the websites:

http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

A property of the dot product that we use is:

cos aba b a b π<
θ θθ θ

φ

where 2 2 2
X Y Za a a a< ∗ ∗

θ
 and abπ  is the angle between the vectors aθ  and b

θ

.  Also,

for the cross product,

sin aba b a b nπ≥ <
θ θθ θ θ

where nθ  is a unit vector that is perpendicular to the plane containing aθ  and b
θ

 and
oriented in a direction that is consistent with the right-hand rule.

9.2 Frink	procedure	for	calculating	setup	angles	

---------- start FRINK procedure -----------

//  Calculates table saw settings for

//cutting sides of an multi-sided vessel

//having sides that slope.

//    N    number of sides

//    S    angle of the sides from horizontal (degrees)

//    MG   miter gauge angle (degrees) from plane of blade

//    BT   blade tilt angle (degrees) from saw surface

//Created By: D. L. Snyder  26 Feb 2011

//Revised: 27 Oct 2013 (added output of dihedral angle)

//Revised: 29 Aug 2014 (added butt joints, corrected Corner_Angle)

//Revised: 1 Dec 2015 (corrected coordinates for miter guage angle)

//

//start.........
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 //user inputs

   [N, S] = input["Vessel or Box Information",

              ["Number of sides",

               "Angle of sides from horizontal (degrees)"]]

 //evaluate constants

     S_deg = eval[S]

     N_num = eval[N]

     Corner_Angle = 180*(N_num-2)/N_num

     a1 = sin[S_deg degrees]

     a2 = cos[Corner_Angle/2 degrees]

     b1 = cos[S_deg degrees]

     b2 = tan[Corner_Angle/2 degrees]

 //evaluate outputs

       BT_MiterJoint = arcsin[-a1*a2]

       BA_MiterJoint = pi/2-abs[BT_MiterJoint]  //complement of BT_MiterJoint

   BA_MJsupplement = pi - abs[BA_MiterJoint]

   //

       BA_ButtJoint = 2*BA_MiterJoint

       BA_BJsupplement = pi - abs[BA_ButtJoint]

   BT_ButtJoint = abs[pi/2 - abs[BA_ButtJoint]] //complement of
BA_ButtJoint

   //

       MG = arctan[b2,b1]  //angle from plane of blade

       MGcomplement = abs[pi/2 - abs[MG]]

           MGsupplement = abs[pi - abs[MG]]

   //

       DihedralAngle = BA_ButtJoint

// display results

     println[" SETUP ANGLES FOR BOXES WITH COMPOUND-ANGLE JOINTS"]

     println[" Input: User Values"]

       println["  Number of Sides = " + N_num]

         println["  Slope of Sides (from horizontal) = " + eval[S] + "\u00B0"]

// '\u00B0' is the unicode for the degree symbol

     println[" Output: Saw Setup Values"]
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       println["  Miter Gauge Angle (from plane of blade) = " + format[MG,"\u00B0",
2]]

         println["    Complementary Miter-Gauge Angle (|90\u00B0-|MG||]) = " +
format[MGcomplement,"\u00B0", 2]]

         println["    Supplementary Miter-Gauge Angle (|180\u00B0-|MG||) = " +
format[MGsupplement,"\u00B0", 2]]

       println["  Blade Tilt Angle for Miter Joint (from perpendicular to blade surface)
BT = " + format[BT_MiterJoint,"\u00B0", 2]]

       println["  Blade Angle for Miter Joint (from saw surface to blade surface)
(|90\u00B0-|BT||) = " + format[BA_MiterJoint,"\u00B0", 2]]

         println["   Supplementary Blade Angle for Miter Joint (|180\u00B0-|BT||) = "
+ format[BA_MJsupplement,"\u00B0", 2]]

   println["  Blade Tilt Angle for Butt Joint (from perpendicular to saw surface)
BT = " + format[BT_ButtJoint,"\u00B0", 2]]

       println["  Blade Angle for Butt Joint (from saw surface to blade surface)
(|90\u00B0-|BT||) = " + format[BA_ButtJoint,"\u00B0", 2]]

         println["   Supplementary Blade Angle for Butt Joint (180\u00B0-|BT|) = " +
format[BA_BJsupplement,"\u00B0", 2]]

   println[" Output: Dihedral Angle (smallest angle between sides) = " +
format[DihedralAngle,"\u00B0", 2]]

//..........end

---------- end FRINK procedure -----------


