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Polyhedral Sundials
Donald Snyder (St. Louis Mo) 

Sundial designers have been placing their dials on the facets of polyhedra for a long time.  Several very 
colorful ones are displayed in the book by Lennox-Boyd [13] that date from the 16th [13, pp. 70-71, 77] 
and the 19th [13, p. 118-119] centuries.  Pictures of many more can be found with a Google search on 
“polyhedral sundial.”  Three examples are displayed in Figure 1. 

Figure 1. Polyhedral sundials: (a) 16th century, attributed to Hans Roch; (b) 16th century,  
attributed to Stefano Buonsignori; (c) 19th century, in Marsden Park, Lancashire,UK1

A polyhedron is a three dimensional object comprised of multiple, flat facets that are connected to one 
another along their edges.  There are many types of polyhedra.  We will be concerned with convex
polyhedra, but sundials on the surface of nonconvex polyhedra are also possible.  A convex polyhedron is 
one in which a line connecting any two points on the surface either lies on the surface or passes entirely 
inside the polyhedron.  A regular polyhedron is one in which all facets are identical regular polygons and 
each vertex has the same configuration of facets as the others.  It has been known since the days of Plato 
that there are only five regular polyhedra.  These are the Platonic solids diagrammed in Figure 2.   

Figure 2. The five Platonic polyhedra: (a) tetrahedron, (b) cube, (c) octahedron,  
(d)dodecahedron, (e) icosahedron 

The Archimedean solids are also convex polyhedra.  They are not regular; while the facets are regular 
polygons, the facets in any one of them are not all the same.  There are thirteen Archimedean solids, 

shown in Figure 3.   

Polyhedral dials (a) and (b) of 
Figure 1 are the Archimedean 
types rhombicuboctahedron and 
truncated octahedron,
respectively, and (c) is the 
Platonic type icosahedron.
Polyhedral shapes are seen not 
only in sundial constructions but 

                                                      
1 For (c): original image http://www.flickr.com/photos/rossendalewadey/5736931333 copyright R. Wade.  This 
work licensed under the Creative Commons Attribution-Share Alike 2.0 Generic.  To view a copy of this license, 
visit http://creativecommons.org/licenses/by-sa/2.0/. 

Figure 3. The thirteen Archimedean solids
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in various branches of science as well.  For example, the truncated octahedron occurs in the study of 
energy bands of solid-state materials2, and the icosahedron of dial (c) is seen in bactriophage lambda (a 
virus that infects bacteria)3.  There are many more polyhedra besides the Platonic and Archimedean ones 
(Cromwell [1] has examples), and some have been used for sundials.  

Three spheres having a common center are associated with each of the Platonic and Archimedean solids.  
These are: a circumscribed sphere, which surrounds the solid, touching all vertices; a midsphere, which is 
tangent to all edges; and, an inscribed sphere, or insphere, that is tangent to all facets. 

The design of a polyhedral sundial proceeds in several steps: 

a. choose the polyhedron to be used; d.  select the type(s) of sundials to be used; 
b. choose the orientation of the polyhedron; e.  design the sundials; 
c. determine the inclination and declination of 

the facets that are to support sundials; 
f.  complete the construction. 

There are many options in choosing the orientation in Step b.  A natural choice is to select one facet to 
rest on a horizontal surface and then rotate the polyhedron on that ‘bottom’ facet until a plane of 
reflection symmetry for the polyhedron lies in the local meridian at the location where the sundial is to be 
placed.  This is not a necessary choice but is the one to be explored.  A way to determine the inclination 
and declination of a facet in Step c is first to determine the unit normal vector to the plane containing the 
facet and from that the inclination and declination.  Various types of sundials can be considered for Step 
d, including polar gnomon, pole gnomon, bifilar, and others.  Designing the sundials can proceed in many 
ways, including empirical methods (see Rohr [15, Ch. 3] and Waugh [16, Ch. 12]), graphical methods 
(see Mayall and Mayall [14, pp. 122-125], Rohr [15, Ch. 3]), dialing-scale methods described by Sturmy4

[11], mathematical methods [see Horst  [12]), and computer-implemented methods (see Casalegno [7], 
Blateyron [8], Sonderegger [9], de Vries [10], and others.5)  The determination, in Step c, of the 
inclination and declination of each of the facets to receive a sundial is addressed after first identifying 
normal vectors for the facets.  

Facet Normal Vectors 

Shown in Figure 4 is a dodecahedron with its twenty vertices labeled a, b, …, t.  This example of a 
Platonic polyhedron will be used to illustrate a methodology that can applied for other polyhedra.  
Establish a rectangular coordinate system having its origin at the center of the dodecahedron; this center is 
the common center of its circumscribed, mid, and inscribed spheres.  The orientation of the twelve facets 
in this coordinate system can be specified by twelve unit vectors, with each vector being oriented so it is 
perpendicular to the plane containing a facet.  These unit vectors point towards the points of tangency of 
the insphere and facets.  The origin [ ]0 0 0 To =�

 of this coordinate system is at the center of the 
dodecahedron, with the z-axis penetrating the centers of the facets labeled k-l-m-n-o and p-q-r-s-t; these 
two facets are parallel to the x,y-plane.  The y,z-plane contains the four vertices a, f, n and q.  This plane 
would be the local meridian plane when designing sundials to be placed on the facets of the dodecahedron 
in this orientation.  It is one of the planes about which the dodecahedron exhibits reflection symmetry; 
another would be the plane containing the vertices j, k, e and s.  In the coordinate system and orientation 
of Figure 5, the unit vector in the direction towards and perpendicular to facet k-l-m-n-o is simply the unit 

                                                      
2 See http://en.wikipedia.org/wiki/Brillouin_zone.  
3 See http://biology-pictures.blogspot.com/2011/11/bacteriophage-t4-image.html for a scanning electron microscope 
image showing that bactriophage lambda appears remarkably similar to the dial of Figure 1(c) but only about 300 
nm in size.  Thanks to R. Snyder for noting this. 
4 Reference provided by F. W. Sawyer III. 
5 Additional software procedures for sundial design are listed by the North American Sundial Society on the Dial 
Links/Sundial Software page of their website http://sundials.org/. 
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vector [ ]0 0 1 T
ze =� along the z-axis.  If this unit vector is translated from the origin to the point of 

tangency of the facet k-l-m-n-o and the inscribed sphere, it will then point away from the side of the 
surface to receive a sundial.  Obviously, the unit vector towards and perpendicular to the plane p-q-r-s-t is 

ze−� .

Figure 4.  Dodecahedron with vertices labeled Figure 5. Dodecahedron in coordinate system 

The unit vectors towards the other ten facets of the dodecahedron are not aligned with any of the 
coordinate axes, but they can be identified through rotations of unit vectors along the axes.  Consider, for 
example, the declining facet a-b-l-k-j.  The unit vector towards this facet and perpendicular to it is 
obtained by rotating [ ]0 1 0 T

ye =�  in the y,z-plane through the angle θ  indicated in Figure 6, which 
shows a portion of the profile of the dodecahedron cut by the y,z-plane.  For a dodecahedron, the dihedral 
angle dθ  between facets k-l-m-n-o and a-b-l-k-j  is given by ( )arccos 5 / 5dθ ≡ − =

( )arctan 2 116.565π − ≈ �  .  The angle ( )arctan 2dπ θ− =  is the supplement of the dihedral angle, and 
the angle θ through which ye�  must be rotated is / 2π  plus this supplement angle, so 

( )/ 2 arctan 2 153.435θ π= + ≈ � .  The rotation of ye�  through the angle θ  is counterclockwise around the 
x-axis, so it is positive (i.e., θ+ ) for the right- hand coordinate system of Figure 5.   

Figure 6. Portion of profile of dodecahedron cut by 
x,z-plane

Figure 7.  Projection unit normal of planar sundial 
surface onto the horizon plane 

Denote the resulting unit vector by ablkju� .  Then, 

01 0 0 0 0 0
0 cos sin 1 cos 2 / 5 0.894
0 sin cos 0 sin 0.4471/ 5

ablkju θ θ θ
θ θ θ

� �� � � � � � � �
� �� � � � � � � �= − = = − ≈ −� �� � � � � � � �
� �� � � � � � � �� �

� .   (1)

The matrix 
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( )
1 0 0
0 cos sin
0 sin cos

x x x x

x x

R ϕ ϕ ϕ
ϕ ϕ

� �
� �= −
� �
� �

used in this step with xϕ θ=  performs the needed rotation about the x-axis.  Rotations about the y and z
axes are also be useful.  These are performed by using the rotation matrices 

( )
cos 0 sin

0 1 0
sin 0 cos

y y

y y

y y

R
ϕ ϕ

ϕ
ϕ ϕ

� �
� �= � �
−� �� �

 and ( )
cos sin 0
sin cos 0

0 0 1

z z

z z z zR
ϕ ϕ

ϕ ϕ ϕ
−� �

� �=
� �
� �

.

This process is repeated for each facet, so consider next facet b-c-d-m-l.  The unit vector for this facet, 
call it bcdmlu� , is obtained from ablkju�  by a counterclockwise rotation around the z-axis through an angle 

2 / 5 72pθ π+ = = � , the angle subtended at the center of a regular pentagon by any of its edges.  Then,  

( )
sin cos 2sin 0.894 0.951 0.8501cos cos 2cos 0.894 0.309 0.276

5 0.447 0.447sin 1

p p

bcdml z p ablkj p pu R u
θ θ θ

θ θ θ θ
θ

−� � � � ×� � � �
� � � � � � � �= = = − ≈ − × = −� � � � � � � �
� � � � � � � �� � � �

� � . (2)

The unit vectors, defnmu� , fghonu� , and hijkou� , towards and perpendicular to facets d-e-f-n-m, f-g-h-o-n, and h-
i-j-k-o are obtained from ablkju�  through rotations about the z-axis by angles 2 pθ , 3 pθ , and 4 pθ ,
respectively.  Then, 

2sin 2 0.5261 2cos 2 0.724
5 0.4471

p

defnm pu
θ
θ

� � � �
� � � �= − ≈� � � �
� � � �� �

� ,
2sin 3 0.5261 2cos3 0.724

5 0.4471

p

fghon pu
θ
θ

� � −� �
� � � �= − ≈� � � �
� � � �� �

� ,

and                                     
2sin 4 0.8511 2cos 4 0.276

5 0.4471

p

hijko pu
θ
θ

� � −� �
� � � �= − ≈ −� � � �
� � � �� �

� .      (3) 

It is evident from Figure 5 that the dodecahedron is a periodic structure with a period of π  radians when 
rotated around the x-axis.   As a result, the unit vectors associated with the remaining facets can be 
obtained by rotating the corresponding unit vectors through an angle of π  radians around the x-axis.  

This rotation is obtained through multiplication of a vector 
T

x y zu u u u� �= � �
�  by the rotation matrix 

( )
1 0 0
0 1 0
0 0 1

xR π
� �
� �= −
� �−� �

,

which results in the vector 
T

x y zu u u� �− −� � .  Hence, the y and z elements of the vector only need a sign 

change for this rotation, yielding: 

( )
0 0

cos 0.894 ,
sin 0.447

efgts x ablkju R uπ θ
θ

� � � �
� � � �= = − ≈
� � � �− −� � � �

� � ( )
2sin 4 0.8511 2cos 4 0.276

5 0.4471

p

ghipt x hijko pu R u
θ

π θ
� � −� �
� � � �= = ≈� � � �−−� � � �� �

� � ,

( )
2sin 3 0.5261 2cos3 0.724 ,

5 0.4471

p

ijaqp x fghon pu R u
θ

π θ
� � −� �
� � � �= = ≈ −� � � �−−� � � �� �

� � ( )
2sin 2 0.5261 2cos 2 0.724 ,

5 0.4471

p

abcrq x defnm pu R u
θ

π θ
� � � �
� � � �= = ≈ −� � � �−−� � � �� �

� �
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and ( )
2sin 0.8501 2cos 0.276

5 0.4471

p

cdesr x bcdml pu R u
θ

π θ
� � � �
� � � �= = ≈� � � �−−� � � �� �

� � .      (4)  

Unit vectors for other orientations of the dodecahedron can be obtained in a straightforward way from 
these ten unit vectors of the particular orientation in Figure 5.  This is because other orientations can be 
specified by rotation angles xϕ , yϕ , and zϕ  about the x-axis, y-axis, and z-axis, respectively.  If the 
desired orientation is specified by successive rotations about the axes in this order, then a rotation matrix 

( ) ( ) ( ) ( ), ,x y z z z y y x xR R R Rϕ ϕ ϕ ϕ ϕ ϕ=  can be applied, with the unit vector for a facet in the chosen 

orientation determined from the unit vector u�  for the corresponding facet in the orientation of Figure 5 by 
the operation ( ), ,x y zR uϕ ϕ ϕ � .

Facet Inclination and Declination Angles from Unit Normal Vectors 
Shown in Figure 7 is a planar surface on which a sundial may be placed; for illustration, this is facet d-e-f-
n-m of the dodecahedron in Figure 5.  The unit normal vector pointing towards and perpendicular to the 
surface is 

T

x y zu u u u� �= � �
� .

Inclination Angle  The inclination of a planar surface is the angle, denoted by incϕ , between the z-axis 
(zenith direction at the location) and the vector normal to the surface.  Thus, 

( )arccos arccosz
inc z

z

u e u
u e

ϕ
� 	⋅= =
 �
 �
� 

� �

� � .     (5)

Declination Angle The declination of a planar surface is an angle denoted by decϕ  and defined as 

follows.  First, project the unit normal vector 
T

x y zu u u u� �= � �
�  onto the x,y-plane (horizon plane).  This 

yields the vector 0
T

x yv u u� �= � �
�  lying in the x,y-plane.    Provided u�  is neither perpendicular to the 

x,y-plane (i.e., not of the form [ ]0 0 1 T
ze± = ±� ) nor confined to the x,y-plane (i.e., not of the form 

0
T

x yu u� �� �  with either 0xu ≠  or 0yu ≠ ), the vectors u�  and v� define a vertical plane having a 

dihedral angle ( )arctan 2 ,y xu uϕ =  with the x,z-plane.  This form of arctangent function makes evident 

the quadrant where the vector 
T

x yu u� �� �  lies.  By definition (in radians), 

( )

( )
( )

( )

arctan / , 0

arctan / , 0, 0

arctan / , 0, 0arctan 2 ,
/ 2, 0, 0
/ 2, 0, 0

, 0, 0.

y x x

y x x y

y x x y
y x

x y

x y

x y

u u u

u u u u

u u u uu u
u u
u u

undefined u u

π
π
π
π

� >
�

+ < ≥�
��− + < <= �

+ = >�
�− = <�

= =��

(6)

With this definition, the angle ( )arctan 2 ,y xu uϕ =  is measured from the positive x-axis with positive 

(resp. negative) values corresponding to counterclockwise (resp. clockwise) rotations of 
T

x yu u� �� �  (i.e., 

right-hand rule) and π ϕ π− < ≤ .  By traditional definition, the declination angle decϕ  of the surface in 
Figure 7 is the dihedral angle between the y,z-plane (i.e., the local meridian plane) and the plane 
containing u�  and v� .  Further, the declination angle is taken as positive when the normal to the plane 
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containing u�  and v�  points towards the West of the meridian plane (i.e., 0xu > ) and negative when it is 
towards the East (i.e., 0xu < ); this is a left-hand rule.   Also, measuring decϕ  modulo 2π  places the 
declination angle in the range decπ ϕ π− < ≤ .  Under these conditions, 

( )
( )
( )

arctan / , 0
2

arctan / , 0, 0
2

arctan / , 0, 02 2
, 0, 0

0, 0, 0
, 0, 0.

y x x

y x x y

dec
y x x y

x y

x y

x y

u u u

u u u u

u u u u

u u
u u

undefined u u

π

π

π πϕ ϕ

π

�− − >�
�
�+ − < ≥
�
�= − − = �+ − < <
�
�+ = >
� = <�
� = =�

(7)

Inclination and declination angles are given in Table 1 for some surface orientations. 
Table 1.  Examples of inclination and declination angles 

surface 
direction

surface normal 
u�

inclination angle 
incϕ  (degrees)

declination angle
decϕ  (degrees)

horizontal [ ]0 0 1 T 0 undefined 

vertical 
facing South

[ ]0 1 0 T− 90 0 

vertical 
facing East

[ ]1 0 0 T 90 -90

vertical 
facing West [ ]1 0 0 T− 90 90 

inclining-declining 
as facet d-e-f-n-m

in Fig. 7

2sin144 2cos144 1 / 5
T

� �−� �
� � 63.435 -144 

Example: Inclination and Declination Angles of Facets of a Dodecahedron 
We now wish to determine the inclination and declination angles of the facets of the dodecahedron in the 
orientation of Figure 5.  This is the first step in designing sundials on the facets using the sundial-design 
software, Sonne, created by Helmut Sonderegger [9] and available at http://www.helson.at/sun.htm/.  The 
Sonne software permits sundials on planar surfaces to be designed.  Several parameters need to be 
specified, including the longitude and latitude of the location where the sundial is to be placed, the 
orientation of the planar surface in terms of its inclination and declination, and size parameters.  The unit 
vectors and corresponding inclination and declination angles for each of the twelve facets are listed in 
Table 2. 

Table 2. Dodecahedron parameters for orientation in Figure 5.
dodecahedron

facet (Figure 5)
unit normal vector

( )72pθ = �
inclination

angle (degrees)
declination

angle (degrees)

k-l-m-n-o (top) [ ]0 0 1 T 0 Undefined

a-b-l-k-j [ ]0 2 1 / 5T− 63.435 0 

b-c-d-m-l 2sin 2cos 1 / 5
T

p pθ θ� �−� � 63.435 -72.0 

d-e-f-n-m 2sin 2 2cos2 1 / 5
T

p pθ θ� �−� � 63.435 -144.0 
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f-g-h-o-n 2sin3 2cos3 1 / 5
T

p pθ θ� �−� � 63.435 144.0 

h-i-j-k-o 2sin 4 2cos4 1 / 5
T

p pθ θ� �−� � 63.435 72.0 

e-f-g-t-s [ ]0 2 1 / 5T− 116.565 180.0 

g-h-i-p-t 2sin 4 2cos4 1 / 5
T

p pθ θ� �−� � 116.565 108.0 

i-j-a-q-p 2sin3 2cos3 1 / 5
T

p pθ θ� �−� � 116.565 36.0 

a-b-c-r-q 2sin 2 2cos2 1 / 5
T

p pθ θ� �−� � 116.565 -36.0 

c-d-e-s-r 2sin 2cos 1 / 5
T

p pθ θ� �−� � 116.565 -108.0 

p-q-r-s-t (bottom) [ ]0 0 1 T− 180 Undefined 

As a second example, and one for which sundials will be designed, consider a dodecahedron with an 
orientation that results from a 180�  rotation about the z-axis of the one in Figure 5.  Unit normal-vectors 
of the facets in this new orientation are obtained by operating on each vector of Table 2 with the rotation 

matrix ( )z zR ϕ  with zϕ π= , so ( )
1 0 0

0 1 0
0 0 1

zR π
−� �

� �= −
� �
� �

.

This transforms any unit normal-vector 
T

x y zu u u u� �= � �
�  into ( ) T

z x y zR u u u uπ � �= − −� �
� , yielding 

the unit vectors in Table 3.  

Table 3. Dodecahedron parameters when rotated 180�  about the z-axis 
dodecahedron
facet (Figure 5 
rotated 180� )

unit normal vector
( )72pθ = �

inclination
angle (degrees)

declination
angle (degrees)

k-l-m-n-o (top) [ ]0 0 1 T 0 Undefined

a-b-l-k-j [ ]0 2 1 / 5T 63.435 180 

b-c-d-m-l 2sin 2cos 1 / 5
T

p pθ θ� �−� � 63.435 108 

d-e-f-n-m 2sin 2 2cos2 1 / 5
T

p pθ θ� �−� � 63.435 36 

f-g-h-o-n 2sin3 2cos3 1 / 5
T

p pθ θ� �−� � 63.435 -36

h-i-j-k-o 2sin 4 2cos4 1 / 5
T

p pθ θ� �−� � 63.435 -108 

e-f-g-t-s [ ]0 2 1 / 5T− − 116.565 0

g-h-i-p-t 2sin 4 2cos4 1 / 5
T

p pθ θ� �− − −� � 116.565 -72 

i-j-a-q-p 2sin3 2cos3 1 / 5
T

p pθ θ� �− − −� � 116.565 -144 

a-b-c-r-q 2sin 2 2cos2 1 / 5
T

p pθ θ� �− − −� � 116.565 144 

c-d-e-s-r 2sin 2cos 1 / 5
T

p pθ θ� �− − −� � 116.565 72 

p-q-r-s-t (bottom) [ ]0 0 1 T− 180 Undefined 
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Example of Sundial Design on a Dodecagon 

The initial step will be to use the Sonne software to design the sundials for the facets selected to contain a 
sundial, with each sundial separately designed.  This software requires as user-supplied data: a choice of 
sundial type; the latitude and longitude of the location where the sundial will be placed; the inclination 
and declination angles of the facet to have the sundial; and, the size of the sundial and gnomon height. 
The sundial type chosen for all facets is inclining/reclining.  The location used for the design is St Louis, 
MO, at 38.654 N� , 90.324 W� .  The assumed orientation of the dodecagon is that of Table 3, where the 
inclination and declination angles are listed.  Program default values for size are used for the sundial plate 
and gnomon (rectangular plate 190 160Height Width× = × , gnomon height 30 mm).  The base length of 
the gnomon is selected to be 0 mm for a pole gnomon.  Also selected are dates for displaying declination 
lines; these include the solstice and equinox dates and, for some dials, family birthdates.  With these 
parameters, Sonne produces an on-screen drawing of the sundial, showing its hour lines, pole gnomon 
location, and declination lines.  There is also a corner scale indicating the gnomon height and providing a 
convenient drawing-scale reference.  The next step is to place the Sonne drawing onto the pentagon-
shaped facet for which it was designed.  This is accomplished by doing a screen capture of the Sonne
drawing and pasting that into a blank page of the 2D drafting software Visio. This pasted drawing is then 
scaled to achieve a gnomon height of 25.4 mm (1 in.)  A drawing of the regular pentagon is then 
superimposed onto the same page, with the size of the pentagon selected as desired, as in Figure 8 this 
selection is made so the circumscribed circle touching the five vertices has a radius of 2.5 in.  The hour 
and declination lines are then traced into Visio vector format and trimmed to fit within the pentagon.  Text 
(such as hour numbers), dial furniture, and color choices are then added.  An example is shown in Figure 
9.

Figure 8.  Visio page showing Sonne image, pentagon 
diagram, and traced hour and declination lines Figure 9.  Southeast facet 

Method of Construction 
The polyhedral sundial shown in Figures 15-16  is made of wood with the dial plates printed on paper that 
is glued to the facets.  The wood selected is African mahogany, milled to a thickness of 0.5 in. and cut 
into twelve 5.5-by-5.5 in. square blanks.  Each blank is to be cut into a regular pentagon sized so that each 
vertex touches a circumscribed circle of radius 2.5 in.  Each edge of a pentagon is to be beveled at an 
angle of 58.2825� , which is one-half the dihedral angle of the facets of a dodecahedron.  These cuts are 
accomplished using the method of pattern sawing on a table saw; see S. Latta [17] for a discussion of this 
method. The pattern used is a regular pentagon having a circumscribed circle of radius 

( ) ( ) 1
2.5 0.5 cos 36 tan 58.2825 2.118

−
� �− ≈� �

� �  in. and no bevel; the pattern is diagrammed in Figure 10 as 

the dashed-line that is concentric with the pentagonal facet (shown as a solid line) of the dodecahedron.  
A pattern of 1/8 in. plastic is made inexpensively with a laser-cutting CNC machine by an engraving 



The Compendium - Volume 19  Number  2                   June  2012                                                      Page 18

company.  The plastic pattern is replicated in MDF of thickness 5/8 in. using a bandsaw and spindle 
sander.  Accuracy to achieve a good approximation to regular pentagon is important in making the MDF 
pattern.  The blade of the table saw is tilted to achieve the desired bevel angle to a good approximation.  
The setup for using the pattern to cut the pentagon facets is seen in Figure 11.  The pattern is attached to a 
mahogany blank by using two-sided carpet tape.  It is important that the pattern remain in a fixed position 
on the blank throughout the cutting process.  To help insure this, three screws are placed in the pattern 
with their tips slightly protruding from the side attached to the blank.  These and the carpet tape result in 
an adequately rigid connection.  The result of cutting one side of the blank is shown in Figure 12.  Five 
cuts using the pattern and pattern guide in this way completes making one of the twelve pentagonal facets 
needed to construct the dodecahedron. 

Figure 10.  Diagram showing pattern dimensions Figure 11. Table saw setup for cutting pentagonal facets 
using a pattern 

Figure 12.  Result of one cutting pass using the pattern Figure 13.  Dodecahedron after glue up and sanding 

Once they are cut, eleven of the facets are 
glued together.  The remaining facet serves as 
the bottom and is retained in a manner that 
permits it to be removed for accessing the 
interior of the dodecahedron should that 
become necessary at a later time.  The 
resulting dodecahedron is shown in Figure 13.  
The polyhedral sundial is completed by gluing 
sundial plates printed on paper to the facets 
and then mounting the pole gnomons.  The 
gnomons, shown in Figure 14, are made of 
brass.  The center of the spherical nodus at the 
top of every pole is 1 in. above the dial plate.  Figure 14. Gnomon design
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They were custom made by machinist William Turner of Turner & Associates in St. Louis.  Views of the 
completed sundial are displayed in Figures 15 and 16. 
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