Volume 20 Number 1 ISSN 1074-3197 (printed) ISSN 1074-8059 (digital) ~ March 2013

ournal of the
Porth American Sundial Society

O

Every moment of light and dark is a miracle.

~SWalt “Whitman

* Compendium... "giving the sense and substance of the fopic within small compass.” Fn dialing, a compendium is a

single instrument incorporating a variety of dial types and ancillary fools.

©20713 WNorth American Sundial Society

An Open-Source App(lication) For Displaying The Equation of Time

On Android-Based Platforms
Donald L Snyder (St. Louis MO)

Frink is the implementation by Alan Eliason of a
scientific programming language that runs on PCs
and Android-based smart phones and tablets. It can
Frink graphics be downloaded at no cost from the website
http://futureboy.us/frinkdocs/. Documentation for
‘ ‘ ‘ Frink is available on this website as are listings of

many sample programs written in the Frink
language. Included among the samples are programs
| Today is 17-August-2012 CE at 3:27:14 PM EOT implementing some expressions found in the book
Astronomical Algorithms by Jean Meeus and other
programs that dialists might find of interest, such as
a program to predict solar alignments with the
“infinite” hallway of MIT.

Equation of Time (minutes) versus Date

Equation of Time is -4.2 minutes

I have written a program (i.e., an “app”) to run on
my Android phone for displaying the equation of
time. Shown in Fig. 1 is a screen shot of my
Android phone taken during the 2012 Annual
Meeting of the North American Sundial Society in
Asheville, NC. A listing of my program is in the
Appendix. The equation of time is evaluated using
5 the approximation FE1 of H. O. Ramp [1]. Here are
steps you can take to get this program running on
your own Android platform.

CivilTime = SundialTime-EQT+D+LC

Step 1. Download Frink onto your Android

platform. Instructions for doing this are on the Frink

BB e | website given above. Frink will then appear among

the applications on your device. All the features of

‘ ‘ | ‘ ‘ ‘ | ‘ Frink can then be used to perform scientific

calculations and to run programs you or others have
written.

D=+1 hr during DaylightSavings, else D=0

Screenshot showing EOT to be -4.2 minutes on August 17,

tep 2. Store the program on r device. This can
2012 at 3:27 PM EDT Step 2. Store the prog on your device sc

be accomplished by entering the lines of code
directly into Frink, but this is a very tedious way to do it. Instead, you can enter the lines of code into a
text file on your PC and then load that file into your Android device by connecting the device via a USB
cable with your device in disk-drive mode, but this is still somewhat tedious. It is easier to download the
a file having the code and then load that into your Android device via a USB cable. Download and save
the file EOT.zip from http://dls-website.com/documents/EOT program. This zip file contains: 1, a text
file, EOT.txt, having the program in the Appendix; and 2, a Frink file, EOT Graph.frink, that can be
executed by Frink.

That’s it. Run Frink, load the EOT program, and run it.

Reference: [1] Herbert O. Ramp , “Equation of Time — Comparison Of Approximating Formulae,” The
Compendium — Journal of the North American Sundial Society, 18(1):18-20, March 2011.

Donald L. Snyder, 7385 Pershing Ave., Unit #2, St. Louis MO 63130 dis@ee.wustl.edu

The Compendium - “Volume 20 Number 1 March 2073 Page 32

Appendix. EOT program listing

// Calculate Equation of Time using approx. FE1

// noted by H.O. Ramp in The Compendium 3/2011
// Created by: D. L. Snyder 27 February 2011

// Start

fmt = ### d-MMMM-yyyy 'CE at' h:mm:ss a z ###
cl :=360.0/365.2422 degrees

c2 := 80.535132 degrees
el :=-107.0605 seconds
e2 = -428.6697 seconds

e3 :=+596.1009 seconds

e4 :=-2.0898 seconds

e5 :=+4.4173 seconds

€6 :=+19.2776 seconds

e7 :=-12.7338 seconds

// In the line below change 2011 to the current year

TodayNumber = (now[] - #2011-01-01#) / (1.0 days)

B = c1*int[TodayNumber] - c2

EOT = el*sin[B] + e2*cos[B] + e3*sin[2*B] +
ed*cos[2*B] + e5*sin[3*B] + e6*cos[3*B] +
e7*sin[4*B]

b[n] :=cl*n-c2

eot[b] := el *sin[b] + e2*cos[b] + e3*sin[2*b] +

ed*cos[2*b] + e5*sin[3*b] + e6*cos[3*b] +
e7*sin[4*b]

//make display graphics

g = new graphics

g.backgroundColor[0.7,0.9,0.7]

g.color[0.7,0.9,0.7]

g.drawRectSides[-10,20 minutes,375,-20 minutes]

g.color[0,0,0]

//make vert coords (day 1 each month)

g.line[1,0.0 seconds,365,1.0 seconds]

g.line[32,-20.0 minutes,32,20.0 minutes]

g.1ine[60,-20.0 minutes,60,20.0 minutes]

g.1ine[91,-20.0 minutes,91,20.0 minutes]

g.line[121,-20.0 minutes,121,20.0 minutes]

g.line[152,-20.0 minutes,152,20.0 minutes]

g.line[182,-20.0 minutes,182,20.0 minutes]

g.line[213,-20.0 minutes,213,20.0 minutes]

g.line[244,-20.0 minutes,244,20.0 minutes]

g.line[274,-20.0 minutes,274,20.0 minutes]

g.1line[305,-20.0 minutes,305,20.0 minutes]

g.line[335,-20.0 minutes,335,20.0 minutes]

//make horiz coords (5 minute intervals)

g.line[1,-15 minutes,365,-15 minutes]

g.line[1,-10 minutes,365,-10 minutes]

g.line[1,-5 minutes,365,-5 minutes]

g.line[1,5 minutes,365,5 minutes]

g.line[1,10 minutes,365,10 minutes]

g.line[1,15 minutes,365,15 minutes]

//make vert labels (months)

x =3 //label offset

g.text["A",91,0 minutes,"right","top"]
g.text["M",121,0 minutes,"right","top"]
g.text["J",152,0 minutes,"right","top"]
g.text["J",182,0 minutes, "right","top"]
g.text["A",213,0 minutes,"right","top"]
g.text["S",244,0 minutes,"right","top"]
g.text["0",274,0 minutes,"right","top"]
g.text["N",305,0 minutes,"right","top"]
g.text["D",335,0 minutes,"right","top"]
//make horiz labels (5 minute intervals)
d=-3 //horiz displacement
g.text["20",d,-20 minutes,"right","center"]
g.text["15",d,-15 minutes,"right","center"]
g.text["10",d,-10 minutes,"right","center"]
g.text["5",d,-5 minutes,"right","center"]
g.text["0",d,0 minutes,"right","center"]
g.text["-5",d,5 minutes,"right","center"]
g.text["-10",d,10 minutes,"right","center"]
g.text["-15",d,15 minutes,"right","center"]
g.text["-20",d,20 minutes,"right","center"]
/ldraw EOT graph
g.color[0,0,0]
for n=1 to 364

{

g.line[n,-eot[b[n]],n+1,-eot[b[n+1]]]

H

//add EOT at today's date

g.color[1,0,0]

g.line[int[TodayNumber],0
minutes,int[TodayNumber],-EOT]

g fillEllipseCenter[int[TodayNumber],-EOT,6,1.2
minutes]

//add results boxes

g.color[0.7,0.9,0.7]

g.fillRectSides[10,-11 minutes,265,-18 minutes]

g.color[0,0,0]

ThisDay = now[] -> fmt

g.text["Equation of Time (minutes) versus Date",
12,-17.5 minutes,"left", "center"]

g.text[" Today is " + ThisDay, 12, -14.7
minutes,"left", "center"]

g.text[" Equation of Time is " + format[EOT,
"minutes", 1],12, -12.0 minutes, "left",
"center"]

g.color[0.7,0.9,0.7]

g.fillRectSides[95,9 minutes,360,17.5 minutes]

g.color[0,0,0]

g.text["CivilTime = SundialTime-
EOT+D+LC",96,10.5 minutes,"left","center"]

g.text[" D=+1 hr during DaylightSavings, else
D=0",99,13.0 minutes,"left","center"]

g.text[" LC is LongitudeCorrection",

99,15.5 minutes,"left","center"]

g.text["]",1,0 minutes,"right","top"] g.show([]
g.text["F",32,0 minutes,"right","top"] /l...... End
g.text["M",60,0 minutes,"right","top"]
The Compendium - “Volume 20 Number 1 March 2013 “Page 33

	nass201.pdf
	EOT

