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Abstract 
 

Methods for predicting the geometry of shadows cast by sunlit objects are well known.  Some of 

these are reviewed and then applied to the design of a particular kind of interactive solar clock 

known as an analemmatic sundial.     
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I.  Introduction 

Shadows cast by objects exposed to sunlight change with time and date as the sun's apparent po-

sition varies during the day due to the earth's rotation and during the seasons due to the earth's 

orbital motion around the sun.  Understanding how to predict the behavior of solar shadows is 

important in a number of areas, including architectural design and the placement of building 

structures, the design and placement of solar-energy collectors, the design and placement of 

flower and vegetable gardens, and the design and placement of time and date indicators.  

 This discussion will be about solar shadows with application to sundials.  At first thought, 

it may seem that sundials for indicating time are of little practical value in these days of high 

technology.  After all, modern clocks are much more accurate than sundials, they work at night 

as well as day, they work on rainy days as well as sunny ones, and they are cheap and readily 

available.  The study of sundials is worthwhile nonetheless.  Understanding how sundials work 

helps to understand the heating and cooling requirements within buildings exposed to sunlight, 

the energy produced by solar panels, the growth of flowers and vegetables in gardens, and effects 

in other applications where sunlight plays a role.  Moreover, shadows cast by sundials are useful 

in unexpected, modern ways.   An example is the sundial affixed to the roving vehicle that land-

ed on Mars in 2004, shown in Figure 1.
2
 Also, and importantly, the study of sundials has educa-

tional merit.  It helps students learn about the world around them, and it shows them how some 

of the abstract mathematics they learn in school, particularly trigonometry, provide very practical 

tools.  Moreover, designing and making one’s own personal sundials can be fun! 

 The first topic to be studied is solar shadows, identifying where the sun is relative to any 

place of interest and where the shadows of objects fall that result from its light.  The ideas are 

then used for the design of analemmatic sundials.  These are interactive sundials, and many ex-

amples of them exist. 

 

 

 

Figure 1 (left) The sundial is installed on the deck of the solar array on the  

Mars Rover.  (center)  The sundial on the Mars Rover.  (right) A picture  

taken of the sundial while on Mars, showing the shadow. 

 

                                                 
2
 These images are from the following website at Cornell University http://athena.cornell.edu/kids/sundial.html.  

More can be learned about the dial from the website of the Planetary Society 

http://www.planetary.org/rrgtm/marsdial/ and other sites on the internet. 

http://athena.cornell.edu/kids/sundial.html
http://www.planetary.org/rrgtm/marsdial/
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Examples of Analemmatic Sundials 

The shadow casting object in an analemmatic sundial, called the gnomon, is usually a vertical 

rod or a person.  In contrast to most sundials, the gnomon is not in a single, fixed position but, 

rather, must be placed in a varying position that depends on the date in order for the sundial to 

indicate the correct time for that date.  A person serving as the gnomon must stand on a date-

dependent place to read the time with any accuracy.  Analemmatic sundials have been built at 

many locations around the world and in many different styles.  Some examples are in the pic-

tures shown in Figure 2; these pictures were derived from a search of the internet for 

“analemmatic sundials.”  The bottom picture on the left is located at the Brooklyn Children’s 

Museum.  It was made by Robert Adzema using hundreds of one-inch tiles.  The gnomon is not 

always a person, as seen in the table top dial of Figure 3, where a thin rod is used as the shadow 

caster.  This dial was made by John Carmichael (see http://www.sundialsculptures.com/).  

 It can be seen in these pictures that an analemmatic sundial consists of two main parts.  

One part has some marks along a curve that indicate the hours of time; this curve is an ellipse, as 

discussed below.  The other part of the dial is a platform containing the date marks where the 

person or gnomon stands to cast the shadow towards the hour marks.  The design of an 

analemmatic sundial therefore consists of locating the hour marks along the ellipse and the date 

marks on the platform.  Once these numerical aspects of the design are completed, there is then 

much leeway in completing the artistic features of the design to give the dial its unique style and 

character.  A description of solar shadows is needed to locate the hour and date marks.  This is 

developed in the next section. 

 There are various approaches for designing an analemmatic sundial.  Purely graphical 

methods can be used; see, for example, Rohr [4].  Empirical methods can also be used by making 

daily and yearly observations of the shadow of a vertical rod.  An ellipse is first laid out at the 

intended site of the sundial, with the minor axis oriented in the north-south direction.  Time 

marks can be placed on the ellipse at selected times during a day of choice, such as hourly, by 

noting where the shadow of a vertical rod located on the minor axis intersects the ellipse.  A date 

mark can be placed on the minor axis of the ellipse for that day.  Observations over the course of 

a year will be needed to locate other date marks empirically along the minor axis.  This experi-

mental method of construction is protracted over time and tedious.  Fortunately, there is a very 

nice analytical way of doing it, which is developed as our discussion proceeds.  While this ana-

lytic method for designing analemmatic sundials can also be used for designing other types of 

sundials and solar calendars, including sundials with fixed shadow casters and henges, we will 

not explore these extensions here. 

 

 

 

 

II.  Solar Shadows 

To a very good approximation, the earth rotates around the sun in an elliptical orbit.  The orbit is 

not quite an ellipse because of the gravitational pull of other planets and distant stars, but the de-

viation from an ellipse is so small that it can be disregarded for the purpose of designing solar 

clocks. 

http://www.sundialsculptures.com/
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Figure 2 Pictures of analemmatic sundials obtained  

by searching the internet for sundials of this type 
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Figure 3  Table top analemmatic sundial made by John Carmichael 

 

 

 

A.  A Brief Review of Ellipses 

A standard ellipse is a curve in a plane, as shown in Figure 4.  It has major and minor axes that 

can be aligned with the axes of a Cartesian coordinate system, with its center, C ,  

 

 

Figure 4  A standard ellipse 

 
 
 
located at the origin (0,0) of the coordinate system and its short and long axes aligned with the  

x-axis and y-axis, respectively, of the coordinate system.
3
  The equation for points (x, y) that lie 

on the elliptical curve is 
  
  

 
2 2

2 2
1

x y

m M
   (1) 

 

 

                                                 
3
 The orientation of the coordinate system used here is rotated clockwise by 90

o
 from ordinary usage.  It is a “right-

handed” system with positive angles measured counterclockwise from the downward pointing positive x-axis.  A z-

axis in a three-dimensional system would be added to point vertically up out of the x,y-plane.  The motivation for 

having the positive x-axis downward pointing is that this will be towards south in sundial designs.  A compass with 

the same coordinate system will have north-south and east-west directions in their usual orientation with north up.   

Sun azimuth angles are usually measured from south in sundial design, so we select the positive x direction down, 

which is towards south on the compass. 
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Where M and m are parameters that determine the size of the major and minor axes.  If M and m 

are equal, say to r, then the ellipse is a circle of radius r.  If M > m, then the major axis of the el-

lipse lies along the y axis of the coordinate system, as shown in Figure 4.  Another way to think 

of the ellipse is in terms of the angle θ shown in the figure.  A point P located in the plane at 
  

    , cos , sinx y m M   (2) 

 
 
is on the ellipse because  
  

 
   

2 2

2 2

cos sin
1

m M

m M

 
  . 

 

As θ varies from 0º to 360º, the point P moves from (x, y) = (m, 0) counterclockwise around the 

ellipse and back.   The center C of the standard ellipse lies at the origin (0,0) of the coordinate 

system.  A point P on the ellipse is at a distance    
2 2

cos sinm M   from the center C of 

the ellipse; this distance varies with θ and, hence, the location of P on the ellipse.  The points 

(0,– f ) and (0,+ f ) are called the foci of the ellipse if 2 2f M m  .  The distance d1 from the 

focal point at (0,– f ) to a point P at  cos , sinm M   on the ellipse is  

 

 

   

 

2 2

1

2 2 2 2 2 2

2 2 2

cos sin

2 sin sin 1 sin

2 sin sin

sin .

d m M

M m Mf M m

M Mf f

M f

 

  

 



 

     

 

 

 (3) 

 

Similarly, the distance d2 from the focal point at (0, f ) to P is sinM f  .  This yields the im-

portant property that for any point P on the ellipse, the sum of the distances from the two foci to 

that point equals the length, 2M, of the major axis, 

 

 1 2 2d d M  . (4) 

 

 The eccentricity, e, of an ellipse is defined by 

 

 
2

2
1

m f
e

M M
    (5) 

 

The eccentricity has a value between 0 and 1, 0 ≤ e ≤ 1.  An ellipse having an eccentricity e = 0 

is a circle.  As illustrated in Figure 5, the ellipse departs more and more from a circle as e in-

creases, becoming simply a line when e = 1. 
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Figure 5  Illustration of the effect of eccentricity on the shape of an ellipse 

 
 
 The equation for an ellipse that is not centered at the origin (0,0) but rather at a point  

(x0, y0) is 

 

 
   

2 2

0 0

2 2
1

x x y y

m M

 
   (6) 

 

An ellipse centered at (0,– f ) is shown in Figure 6.  The focal point at (0, f ) in Figure 4 is now at 

the origin in Figure 6, and (6) becomes 

 

 
 

22

2 2
1

y fx

m M


   (7) 

 

 

Figure 6  Ellipse with a focal point at the origin 

 

A point P on this ellipse has coordinates    , cos , sinx y r r  , where r is the distance from 

the focal point at the origin to P, and   is the angle that the line connecting the origin to P  
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makes with the positive x axis.  The point P at    , , 90r M f     on the ellipse is closest to 

the focal point at the origin, and    , 2 , 90r M f     is the most distant point. 

 

 
 

B.  Earth Motions and Seasons 

The earth orbits the sun periodically, with a period of 365.25 days, following an elliptical path 

with the sun at one focal point, so we may think of the point P in Figure 6 as representing the 

center of the earth and the origin as representing the center of the sun.  The orbital path defines a 

plane called the ecliptic.  The center of the earth, throughout the course of its annual orbit, and 

the center of the sun lie in the ecliptic.  While the earth flies through space around the sun, it also 

rotates periodically about its own axis, with a period of 24 hours. 

 The closest approach of the earth to the sun, called the perihelion, occurs around January 

2 each year.  At perihelion, 90   in Figure 6, and r is approximately 111.47 10  meters (or 

about 91 million miles).  The point when the earth is most distant from the sun, called aphelion, 

occurs around July 3.  At aphelion, 90    in Figure 6, and r  is approximately 111.52 10  me-

ters (or about 94 million miles).  The eccentricity e  of the earth’s orbit is approximately 0.0167, 

so the orbit is very nearly a circle.  This eccentricity is too small to account for the annual sea-

sons.  The earth rotates about its polar axis as it orbits the sun.  This axis is not perpendicular to 

the ecliptic but, rather, tilts about 23.45 degrees from that.  The tilt of the axis, along with the 

orbital motion, cause the angle of incidence of the sun’s rays at any place on the earth to vary 

between –23.45º  and +23.45º, resulting in the seasons.  Figure 7 shows some of the critical posi-

tions of the earth in its elliptical orbit around the sun.   Consider a plane that is perpendicular to 

the ecliptic and which contains the centers of 

 

 

Figure 7  Some critical positions of the earth in its elliptical orbit around the sun 

 
 
the sun and earth.  I will call this the Milankovitch plane after the Serbian scientist Milankovitch 

who in the 1920s studied the influence of the solar cycle on climate (see 
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http://aa.usno.navy.mil/faq/docs/seasons_orbit.html).   Over the course of a year, the 

Milankovitch plane rotates around the sun, moving with the earth in its orbit.  The axis of rota-

tion of the earth lies in this plane only two times during the year.  These are the winter and sum-

mer solstices.   At a solstice, the greatest number of hours of sunshine for any day of the year oc-

curs in the hemisphere tilted towards the sun, and this is in the summer for that hemisphere; the 

fewest number of hours occurs for the opposite hemisphere, which is in the winter.  The winter 

and summer solstices indicated in Figure 7 are for the northern hemisphere.  At other days of the 

year, the axis of rotation of the earth is tilted out of the Milankovitch plane.  The greatest tilt oc-

curs twice a year when it reaches ±23.45 degrees.  These are the equinoctial days when the num-

ber of hours in the day and night are equal.    

 The orbits of all of the other planets of our solar system also lie in the ecliptic plane.   

Shown in Figure 8 is a photograph taken shortly after sunset by Jimmy Westlake on June 19, 

2005.  Three planets can be seen above the Colorado Rocky Mountains in the foreground.  These 

are Saturn, Venus, and Mercury, all lying in the ecliptic.  Also, see Figure 16 for an annotated 

version of this picture.   

 
 
 

 

Figure 8  Photograph taken by Jimmy Westlake of Colorado Mountain College on June 19, 2005 shortly after 

sunset.  Saturn, Venus, and Mercury can be seen to lie along a line, the ecliptic, with the Colorado Rocky 

Mountain skyline in the foreground.  (From the website of the Astronomy Picture of the Day for June 24, 

2005 at http://antwrp.gsfc.nasa.gov/apod/archivepix.html) 

 
 

http://aa.usno.navy.mil/faq/docs/seasons_orbit.html
http://antwrp.gsfc.nasa.gov/apod/archivepix.html
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C.  Coordinates 

The earth, approximated as a sphere, is represented in Figure 9.  The two points where the spin 

axis of the earth meets the surface of the earth are called the poles.  One end of the spin axis 

points towards the star Polaris.  The pole closest to Polaris is called the North Pole, and the other 

is the South Pole.  The equator is the great circle
4
 that is perpendicular to the spin axis and mid-

way between the poles.   Great circles that pass through the poles are called meridians.  By a 

long standing tradition, the meridian passing through Greenwich, England is known as the prime 

meridian; it is used as a reference to specify the position of all other meridians.  Circles that are 

not great circles but are parallel to the equator are called parallels.   

 Identifying the location of an object on the earth’s surface or in space requires that a co-

ordinate system be specified.  There are many possible coordinate systems that can be adopted.  

Some are earth centered, and some are place centered. 

 

 

 
 

1.  Earth Centered Coordinate Systems 

The equatorial coordinate system is earth centered.  It is defined in terms of the equatorial plane.  

This is a plane of infinite extent that passes through the center of the earth and contains the 

earth’s equator.  In the equatorial coordinate system, the location of any point in space can be 

specified by the values of its Cartesian coordinates (x, y, z) shown in Figure 9.  

 
 

 

Figure 9  The equatorial coordinate system 

 
 
 

                                                 
4
 A great circle on the surface of a sphere is a circle on the surface with its center at the center of the sphere. 
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The origin of this coordinate system is at the center of the earth.  It is a right-handed coordinate 

system, with the x axis oriented towards the intersection of the prime meridian and the equator, 

and the z  axis is oriented towards the North Pole.  A point in the equatorial plane has Cartesian 

coordinates (x, y, 0).  A point P on the surface of the earth will have coordinates (x, y, z) that sat-

isfy 2 2 2 2x y z r   , where r  is the earth’s (mean) radius.  Alternatively, and commonly, the 

location of the point can be specified in a three-dimensional polar coordinate system, having two 

angular coordinates and one radial coordinate.  These are defined in Figure 10.  The longitude of 

P is the angle θ  measured along the equator between the prime meridian and the ”local” meridi-

an passing through P.  This angle is positive if measured counterclockwise from the x axis in the 

x,y – plane (that is, towards the east from the prime meridian in the equatorial plane).  Otherwise, 

it is negative.  for example, the longitude of St. Louis, MO, is 90.3 degrees west of the prime me-

ridian, so θ = –90.3º or, alternatively, θ = 269.7º.  The latitude of P  is the angle   in Figure 10 

measured along the  

 

 

Figure 10  Longitude and latitude coordinates 

 
local meridian that passes through P  and the equator.  This angle is the same as that between the 

equator and the point at the intersection of the parallel containing P  with the prime meridian 

when measured along the prime meridian.   It is positive if measured in the counterclockwise in 

the x,z – plane (that is, towards the northern hemisphere from the x-axis).  It is therefore positive 

for locations in the northern hemisphere and negative for those in the southern hemisphere. 

 The location of a place P on the surface of the earth can be specified by its latitude and 

longitude angles,   and  , and its distance, r, from the earth’s center.  The distance from earth’s 

center is usually omitted explicitly when a spherical earth model is assumed, but the elevation 

above or below sea level is given when deviations from a sphere are of interest.  For sundial 

computations, this small variation is usually disregarded.  Alternatively, the location of P  can be 

given in terms of its (x, y, z) coordinates.  These are related to the polar-coordinate representation 

in the following way: 
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cos cos

cos sin

sin

x r

y r

z r

 

 



   
   


   
      

 (8) 

. 

 Finally, note that the location of any object, whether on the surface of the earth or not, 

can be specified within this coordinate system.  All that is required is to consider a line drawn 

from the center of the earth to the object’s center.  The point where this line penetrates the sur-

face of the earth specifies the latitude and longitude of the object, and its radial distance com-

pletes the specification.  This includes the sun, an object in which we are very interested.   

 Another earth-centered coordinate system is one in which the longitudinal reference is 

not the prime meridian but, rather, the local meridian of a place P  of interest.  This system is il-

lustrated in Figure 11 for specifying the position of the sun.  The Cartesian coordinate system  

 ', ', 'x y z  is obtained from that of Figure 10 by rotating the coordinates  

 
 

 

Figure 11  Hour line and declination coordinates 

 

 , ,x y z  about the z  axis through an angle θ  equal to the longitude of  P.   A point located at the 

coordinates  , ,x y z   in Figure 9 is located at the coordinates  ', ', 'x y z  in Figure 10, according 

to: 

 

 

' cos sin 0 cos sin

' sin cos 0 sin cos .

' 0 0 1

x x y

y x y

z z

   

   

     
     

    
     
          

 (9) 
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A polar coordinate representation in the  ', ', 'x y z  frame is important and used routinely in nav-

igation, sundial design, and other areas involving solar effects.   There are two angles, which are 

analogous to the longitude and latitude angles of Figure 10.  The longitude angle relative to the 

local meridian of P is labeled τ in Figure 11.  It is common to specify this angle in the units of 

time rather than degrees.  This is achieved taking into account that the earth rotates through 360 

degrees in each 24 hour day, so it rotates through 15 degrees per hour and 1/4 degree each mi-

nute.  This scaling is used in specifying τ in time units.  The sun passes through the plane of the 

local meridian of P at 12:00 noon local solar time.  At that same instant, it passes through 11:00 

a.m. and 1:00 p.m. at the meridians that differ in longitude by +15 and -15 degrees, respectively, 

from the longitude of P.  The value of 1.5   hours represents the meridian separated towards 

the east by 22.5 degrees of longitude from the local meridian of P.  Noon occurs at that meridian 

1.5 hours before it does at P.  Similarly, 1.5    marks the meridian 22.5 degrees of longitude 

towards the west from that of P, and noon occurs there 1.5 hours after it does at P.  In general, 

 15 12solar timet     degrees.  The latitude angle of the point S in Figure 11 is labeled δ.  This 

latitude angle, measured from the equatorial plane, is called the declination when the point S is 

determined by the position of the sun, as it is in Figure 11.  In this earth-centered coordinate sys-

tem, the position of the sun is specified by its hour angle,  τ, its declination, δ, and the distance,  

sund , of its center from the center of the earth.  The sun’s declination varies between 23.45  and 

23.45  over the course of the sun in its annual orbit.  The location the sun is given in terms of 

its  ', ', 'x y z  coordinates or its polar coordinates  , ,r  .  These are related in the following 

way. 

 

 

' cos cos

' cos sin .

' sin

sun

x

y d

z

 

 



   
   


   
      

 (10) 

 

2.  Place Centered Coordinate Systems 

Coordinate systems that are centered at a place of interest on the surface of the earth, P, are also 

commonly used.   An example is shown in Figure 12.   Here,  ", "x y  lie in the plane that 
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Figure 12  Horizon coordinates 

 
 

is tangent to the earth’s surface at P, which is called the horizon plane, with "x  lying in the me-

ridian plane of P.  The "z  coordinate is perpendicular to this plane at P.   The coordinate system 

 ", ", "x y z  of Figure 12 is obtained from the coordinate system  ', ', 'x y z  of Figure 11 by 

translating the origin from the center of the earth to the place P on the surface and a rotation 

about the 'y  axis by   degrees, where   is the colatitude of P, defined by 90   .   Thus, 

 

 

" 0 cos 0 sin ' sin 0 cos '

" 0 0 1 0 ' 0 1 0 ' ,

" 1 sin 0 cos ' cos 0 sin '

earth

x x x

y r y y

z z z

   

   

           
          

            
                    

 (11) 

 

Where earthr  is the earth’s radius.  Hence, 

 

 

" 'sin 'cos 0

" ' 0 .

" 'cos 'sin 1

earth

x x z

y y r

z x z

 

 

     
     

 
     
          

 (12) 

 
Since "x  lies in the meridian plane passing through the place P, it points towards the south; "y  

points towards the east; and, "z  points towards the zenith at P.  

 A place-centered polar coordinate-system is natural and of interest for specifying the lo-

cation of objects in space, such as the sun.  This is the polar coordinate system shown in Figure 

13.  The Cartesian coordinates  ", ", "x y z  are those shown in Figure 12.  The location  
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Figure 13  Polar horizon coordinates 

 

 

of an object, such as the sun, is specified by two angles, a and e, and its radial distance R  from 

the local point P on the earth’s surface.  Here, a is the azimuth angle of the object measured from 

the "x  axis, and e is the elevation angle of the object from the horizon plane.  Positive values of 

the azimuth angle are measured counterclockwise from the positive "x  axis; that is, positive 

from south towards the east.  The Cartesian and polar representations are related by: 

 

 

" cos cos

" cos sin .

" sin

x e a

y R e a

z e

   
   


   
      

 (13) 

 

 Suppose that the sun is the object in Figure 13, so sunR d .  By equating (12) to (13) and 

replacing  ', ', 'x y z  by their values in (10), there results 

 

 

cos cos cos cos sin sin cos 0

cos sin cos sin 0 .

sin cos cos cos sin sin 1

sun un earth

e a

d e a d r

e

    

 

    

     
     

 
     
          

 (14) 

 

The following three equations are then obtained: 

 

 cos cos cos cos sin sin cos ,e a        (15) 

 

 cos sin cos sin ,e a    (16) 

 

and 

 

 sin cos cos cos sin sin cos cos cos sin sin ,earth

sun

r
e

d
               (17) 
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where the ratio / 0.00004earth sunr d   is neglected in the last term of (17) because of its small size.  

These are well known equations for determining the position of the sun at a given place for a 

specified date and time.  The place provides the latitude,  ; the date provides the sun’s declina-

tion,  , either by calculation from known formulas or from an ephemeris table; and the time 

provides the hour angle.  Given these parameters, the sun’s elevation and azimuth can be deter-

mined.  Here is a summary for later reference. 

__________________________________________________________________ 

 

 From (17), the solar elevation is: 

 

  arcsin cos cos cos sin sin .e        (18) 

 

This elevation angle is measured positive from the horizon plane towards the zenith.   

 

 From the ratio of equations (15)  and (16), the azimuth angle is: 

 

 
sin

arctan .
cos sin tan cos

a


   

 
  

 
 (19) 

 

This azimuth angle is measured positive counterclockwise from south.  For azimuth angles 

measured positive clockwise from the north, use 180 – a  degrees.  Care is needed in using (19) 

to insure that the angle is in the correct quadrant.
5
 

 

 

solar declination (determined from the date)

latitude (determined from the place)

time (solar hour angle from local south)













 

 
 

__________________________________________________________________ 

 

 

The declination of the Sun is zero at the vernal equinox, about March 21, and the autumnal equi-

nox, about September 21.  It’s maximum and minimum values are 23.45  and 23.45 , respec-

tively.  In the Northern hemisphere, the maximum occurs on the Summer solstice, about June 21, 

and the minimum on the Winter solstice, about December 21.  The declination varies approxi-

mately as a sinusoid over the course of a year.  Thus, the solar declination can be determined ap-

proximately by using the expression 

 
  

                                                 
5
 If it is available, use the function  atan2 ,y x  rather than  atan /x y  to evaluate  1

tan /x y


.  This will re-

solve the quadrant ambiguity issue when evaluating the inverse tangent function.  The preferred function is avail- 

able, for example, in MATLAB. 
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81

23.45 sin 2 ,
365.25

N
 

 
  

 
 (20) 

 
Where N  is the day number starting with N = 1  on January 1, N = 2 on January 2, , N = 81 on 

March 21, etc.  The graph of this expression in Figure 14 shows, approximately, the variation of 

the solar declination during a year.  Of course, the declination of the sun varies continuously as a 

function of the date and time and not simply the day number.  J. Meeus [3, Ch. 25] gives an ac-

curate expression for the continuously varying solar declination in terms of the date and time. 

 

 
 

 

Figure 14 Solar Declination Versus Day Number 

 
 
 

Example:  Where is the sun at 12:00 noon (local solar time) on January 1 in St. Louis, MO? 

Where will the shadow be of a vertical rod that is 1 meter in length?  The latitude of St. Louis, 

MO, is 38.6  .  To determine the solar declination, use the approximating formula (20) to get 

23.01   degrees.  The hour angle from local south is  15 12 0solar timet      degrees.  Then, 

from (18), the elevation of the sun is 24.4  degrees, and from (19), its azimuth angle is 0 degrees 

(due south).  The length and direction of the shadow cast by a thin, 1 m vertical rod is about 2.2 

m towards true north.  The length and direction at other times are given in the table below and 

illustrated in Figure 15. 
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solar 

time 

 

 (degrees) 

elevation angle 

above horizon 

e (degrees) 

azimuth angle 

from south 

a (degrees) 

shadow 

angle (degrees) 

a+180º 

shadow 

length (m) 

ctan(e) 

9:00 +45 11.7 +42.4 222.4 4.8 

10:00 +30 18.5 +32.9 212.9 3.0 

11:00 +15 22.9 +18.5 198.5 2.4 

12:00 0 24.4 0 180 2.2 

13:00 -15 22.9 -18.5 161.5 2.4 

14:00 -30 18.5 -32.9 147.1 3.0 

15:00 -45 11.7 -42.4 137.6 4.8 

 
 

 

Figure 15  Shadow lines on January 1 in St. Louis, MO, of a one meter vertical rod 

 
Example:  Jimmy Westlake, who took the photograph displayed in Figure 8, teaches at Colorado 

Mountain College in Steamboat Springs, CO, which is at 40.5
o
 north latitude.  The angle which 

the horizon plane at a place of latitude   makes with the equatorial plane is 90º –  , so at 

Steamboat Springs, this angle is 90º – 40.5º = 49.5º.  Since the equatorial plane is tilted at an an-

gle of about 23.4º to the ecliptic plane, we expect the angle between the equatorial plane and the 

horizon plane at Steamboat Springs to be about 49.5º – 23.4º = 26.1º degrees.  An estimate of 

this angle is seen in Figure 16. 
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III.  Time 

A.  Varieties of Time 

A quick answer to the question “What time is it?” is usually obtained by glancing at a wall clock 

or a wrist watch.  But being quick does not necessarily mean being right.  The complication is 

that there are many versions of time, so one should first inquire about the kind of time that is 

sought before answering.  A 24 hour time scale starts at midnight with zero.  Noon is at 12:00, 

and the sequential hours after noon are at 13:00, 14:00, etc., through 24:00, which is again mid-

night and so equal to zero in modulo-24 cyclic counting.  The earth’s elliptical orbit is often ap-

proximated as circular, with the earth rotating at a uniform rate of 

 
 

 

Figure 16  Annotated version of Fig. 6 showing Saturn, Venus, and Mercury in the ecliptic plane tilted about 

26.1 degrees to the horizon plane 

 
 

360º/year around the sun at the center of the circle.  Solar time within this approximation is 

called mean solar-time.  Sundials are routinely designed for mean solar-time.  Solar time is then 

obtained from mean solar-time by a correction known as the equation of time, which is discussed 

below. 

 Local noon mean-solar-time, used in the discussion above, occurs when the sun’s center 

lies in the plane of the local meridian, at which instant the sun is at its highest elevation that day 

for the local place.  Local mean-solar-time is then measured by the sun’s position relative to the 
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local meridian.  13:00 local mean-solar-time occurs one hour after the sun reaches its highest el-

evation at the location and the earth has rotated through 15 degrees.  For most purposes, this is 

not a convenient way to measure time because it is different for every place having a different 

longitude.  For this reason, other time measures have been adopted by governments so that a giv-

en time instant, such as noon, occurs for locations over a wide range of contiguous longitudes.   

Coordinated Universal Time (UTC), known also as Greenwich Mean Time (GMT) and Z-time, 

is perhaps the most important example.  For this, the world is divided into time zones, with a 

time zone encompassing all locations within a span of 15 degrees of longitude.  All locations 

within a zone have the same UTC, GMT or Z-time.  The prime meridian, which is at the 0  lon-

gitude of Greenwich, England, serves as the reference in defining the zones.  All meridians with-

in ±7.5 degrees of the prime meridian form the central zone, labeled Z in the map of world time 

zones in Figure 17.
6
  However, the zones are not a neat partitioning of the 360º degrees of longi-

tudes into 15º groupings bounded by meridians.  Rather, the zone boundaries are in many places 

very irregular, following rivers, state and political boundaries, etc.   A common time is assigned 

to all locations within a zone regardless of its differing longitudes.  Noon for all locations within 

a time zone occurs at the instant the sun’s center is in the plane of the reference meridian as-

signed for that zone, with the reference meridian being at the center of the 15º span of meridians 

of the zone.  The eastern time zone in the U. S. is in the zone labeled R  in Figure 17.  Times 

within the eastern time zone are labeled Eastern Standard Time (EST).  EST equals GMT minus 

5 hours because zone R is (about) 75º of longitude west of the prime meridian at Greenwich, 

England.  There are also Central Standard Time (CST), Pacific Standard Time (PST), and other 

special designations around the world.  There are thus many kinds of time measures, and this al-

so includes daylight savings times that have not yet been mentioned.  Relating local solar-time to 

local “clock” time requires accounting for the difference between the longitude of the local me-

ridian and that of the reference meridian for the time zone in which the local place is situated, 

and whether or not daylight savings time is in effect must be considered.  Thus, 

 

 
1 1

,
15 15

clock time solar time mean solar timet t L DST t EOT L DST             (21) 

 

where L  is the longitude correction,  

 

 
1, daylight savings time in effect

0, daylight savings time not in effect.
DST


 


 (22) 

 

and 

 

 solar time mean solar timeEOT t t     (23) 
 
is the “equation of time,” which is discussed more below. 

 There is additional complication that makes answering the question “What time is it?” 

even more difficult.  The measurement of time by fundamental physical processes has in recent 

                                                 
6
 See http://www.maybeck.com/ztime/ for an interesting discussion by Harold Maybeck of the alphabetic labeling of 

time zones. 

http://www.maybeck.com/ztime/
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years resulted in the atomic clock.  With it, time is measured by natural oscillations of atoms.  

Important devices rely on this method of measuring time, such as: global positioning systems 

now found in many cars, navigation, and military systems; watches and clocks automatically up-

dated by time-synchronized radio transmissions; and, time on the internet.  While a year meas-

ured by atomic time and solar time differ by about a “leap second” that might seem insignificant, 

the discrepancy is far from negligible.   There is much discussion currently about how to modify 

universal coordinated time (UTC) to correct the problem.  Arguments between engineers and 

scientists who rely on atomic time and astronomers and sundialists who rely on solar time are 

intense about this one second annual variance.  See:  

 http://www.ucolick.org/~sla/leapsecs/, 

 http://www.cl.cam.ac.uk/~mgk25/time/metrologia-leapsecond.pdf ,    
and 
 http://www.ucolick.org/~sla/leapsecs/onlinebib.html 
for a survey and references on leap seconds.  See 
 http://www.mail-archive.com/leapsecs@rom.usno.navy.mil/msg00476.html 

for a discussion by J. Meeus of the impact on astronomy and sundials of switching UTC to an 

atomic time measure. 

 

B.  The Equation of Time 

The Equation of Time ( EOT ) is the difference between solar time and mean solar time.  This 

correction depends on the declination of the sun and so is date and time dependent.  Mean solar 

time is determined under the approximation that the earth’s orbit is circular and in the equatorial 

plane.  Solar time and mean solar time differ because the earth’s orbit is elliptical, not circular, 

and the ecliptic is tilted away from the equatorial plane.  Robert Urschel gives an excellent tuto-

rial discussion of the EOT at the website http://www.analemma.com/.   Several equations have 

been developed for approximating the EOT.  One, given by W. Stine and R. Harrigan [6] and 

attributed by them to L. Lamm, [2] is: 

 

 
5

0

cos 2 sin 2
365.25 365.25

k k

k

kN kN
EOT A B 



    
     

    
 , (24) 

 

in minutes, where N  is the day number ( N =1 on Jan. 1, N =2 on Jan. 2, etc.) , and the coeffi-

cients, kA  and kB , are given in the following table. 

 

k Ak Bk 

0 1.25210
-2

   

1 5.57210
-1

 -7.337 

2 -3.135 -9.419 

3 -7.84610
-2

 -3.09610
-1

 

4 -1.31210
-1

 -1.79010
-1

 

5 -9.06010
-3

 -1.40810
-2

 

 
 

http://www.ucolick.org/~sla/leapsecs/
http://www.cl.cam.ac.uk/~mgk25/time/metrologia-leapsecond.pdf
http://www.ucolick.org/~sla/leapsecs/onlinebib.html
http://www.mail-archive.com/leapsecs@rom.usno.navy.mil/msg00476.html
http://www.analemma.com/
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Figure 17  World map of time zones  

(from http://aa.usno.navy.mil/faq/docs/world_tzones.html) 

 

 

 

J. Meeus [3, Ch. 28] gives an accurate expression for the EOT as it depends on the date and time.  

One way to display the EOT is by its graph in Figure 18.  Another common way is the curve 

shown in Figure 19 of the solar declination of Figure 14 versus the EOT of Figure 18 with the 

day number, N , as a parameter along the curve; in Figure 19, the day numbers 1, 32, 60, etc. are 

indicated and labeled with their corresponding dates Jan. 1, Feb. 1, Mar. 1, etc. 
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Figure 18 Equation of Time 

 

 

Figure 19 Solar Declination and the Equation of TIme 
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The curve in Figure 19 is called the solar analemma.  It models the sun’s apparent position at a 

given time instant each day over the span of a year.  For example, Bjarne H. Madsen made the 

composite picture of the sun in Figure 20.  Using a permanently mounted camera, he acquired 

photographic exposures of the sun at the same time instant on 44 days between November 2000 

and October 2001.  These were combined with one foreground photograph to produce the com-

posite picture.   See his website at 
 

http://home.worldonline.dk/bhm/analemma.htm. 
 
Additional pictures of the solar analemma and some further explanations can be seen at the fol-

lowing websites: 
 

http://www.perseus.gr/Astro-Solar-Analemma.htm, 

http://www.analemma.de/english/analem.html, 
and 

http://antwrp.gsfc.nasa.gov/apod/ap020709.html. 

 
 
 

 

Figure 20 Solar Analemma (photo by B. H. Madsen) 

 
 
 Either Figure 18 or Figure 19 is used to determine the value of the equation-of-time for a 

particular date of interest.  Using (21), this value is subtracted from the time indicated by the 

sundial in order to obtain clock time. 

 

 

http://home.worldonline.dk/bhm/analemma.htm
http://www.perseus.gr/Astro-Solar-Analemma.htm
http://www.analemma.de/english/analem.html
http://antwrp.gsfc.nasa.gov/apod/ap020709.html
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IV.  Analemmatic Sundial Design 

An analemmatic sundial consists of two parts.  One is an ellipse along which there are time 

marks.  The ellipse is oriented so that its minor axis is in the true, not magnetic, north-south di-

rection for the location of the sundial, and the major axis is perpendicular to that in the east-west 

direction.  The center of the ellipse, at the crossing of the axes, is placed so that the completed 

sundial is in the desired location.  The other part of the analemmatic sundial is a line along which 

are date marks.  This line is in the north-south direction on the minor axis of the ellipse.  A shad-

ow caster, typically a person, is placed or stands on a date mark.  The shadow of the caster at a 

certain time on that date then falls towards the appropriate time mark. 

    Several steps are required in the design of the sundial.   

 First, the desired location of the sundial must be identified and made flat and horizontal.  

A design is still possible if the location is not made to lie in a horizontal plane but will 

require additional considerations.   

 Next, the true north-south direction must be determined, which can be accomplished in a 

variety of ways, some of which are outlined below.  Draw a north-south line once the di-

rection is determined. Then, determine and draw an east-west line passing through the 

desired center location of the sundial.   

 The ellipse defining the analemmatic sundial can now be drawn and the time marks 

placed on it, as discussed below.   

 Finally, the locations of the date marks are determined and the marks placed along the 

north-south line. 

These steps complete the mathematical portion of the design.  There are still two more important 

steps.   

 One is the design of the artistic or esthetic aspects of the sundial.  Here, there is great 

freedom and opportunity for creative imagination.  The sundial can be quite simple if de-

sired, or it can be elaborate.   

 Lastly, the sundial must be constructed, so the appropriate materials need to be selected 

and construction methods adopted to use those materials.  It can be constructed as a tem-

porary project, or it can be one intended to be in place for an extended time. 

Finally, when the construction is complete, it’s time to try the sundial on a sunny day, take some 

pictures, and have some fun with the new time piece. 

 

 

A.  Determining the true North-South Direction 

R. Rohr [4] and A. Waugh [7] describe several methods for determining the true north-south di-

rection at a given location.  A compass can be used, but it will indicate magnetic north.  A cor-

rection factor is needed to determine true north from magnetic north.  Such factors are available 

on some maps.  Another approach is to observe and mark the direction of the pole star, Polaris.  

Perhaps the easiest method begins with drawing a circle around the center location where the 

analemmatic sundial is to be placed.  Then, erect a narrow rod vertically at the center point of the 

circle.  Put two marks on the circle, one where the tip of the shadow of the vertical rod crosses 

the circle before noon and the other where it crosses after noon.  Draw a line between these two 
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marks, and construct its perpendicular bisector.  This bisector will be in the true north-south di-

rection. 

 
 

B.  Design of the Time Marks 

Shown in Figure 21 is an ellipse with its axes aligned to the north-south and east-west directions 

of the place where the analemmatic sundial is to be placed.  The semi-major and semi-minor ax-

es have sizes M  and m, respectively.   Suppose that at a certain time, the azimuth 

 
 
 

 

Figure 21 Design of the Time Marks 

 
 
angle of the sun is a  degrees.  A vertical rod placed at the origin will cast a shadow at the angle  

θ = 90º + a  in the opposite direction from the sun.  From (2), the location of all points on the el-

lipse satisfy    , cos , sinx y m M   for any choice of θ.  In particular, choosing θ = 180º + a  

gives the location of the point on the ellipse that is intersected by the line of the shadow cast by 

the vertical rod placed at the origin when the azimuth angle of the sun is aº.  This intercept is at  

   , cos , sinx y m a M a   .   

 The time marks on the ellipse are located on an equinoctial day.  On such a day, the dec-

lination of the sun,  , is zero.  From (19), the azimuth angle of the sun then satisfies: 

 

 
sin

tan ,
cos sin

a


 
  (25) 
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where τ is the solar hour angle from the local meridian, and   is the latitude of the location 

where the dial is to be placed.   We wish to mark the ellipse with the time τ when the azimuth of 

the sun is at this hour angle.  If the dimensions of the ellipse are selected so that the minor and 

major axis dimensions satisfy sinm M  , the intercept is located on the ellipse at 

 

    , sin cos , sin ,x y M M      (26) 

 

and (25) is satisfied.  The intercept point on the ellipse in Figure 21 can then be marked as the 

solar time τ hours.   Various times can be marked by making various choices for τ. 
  

1.  Sunrise and Sunset 

There is obviously no need to place time marks on the ellipse for times between sunset and sun-

rise.  Equation (18) can be used to determine the times of sunrise and sunset.  These can then be 

used to limit the ellipse of an analemmatic sundial to times of sunshine.  Since the elevation an-

gle of the sun is 0º at sunrise and sunset, setting e = 0 in (18) yields 

 

 cos cos cos sin sin 0,s       (27) 

 

where s  is the time of sunset or sunrise.  Thus, the times of sunset and sunrise satisfy: 

 

  arccos tan tans     (28) 

 

degrees, or 

 

  
1

arccos tan tan
15

s     (29) 

 

hours.    

 Let sa  be the azimuth angle of the sun at sunset or sunrise.  Then, from (15), with e = 0º, 

and (28) 

 

 

cos cos cos sin sin cos

cos tan tan sin sin cos

sin

cos

s sa     

     





 

  

 

 (30) 

 

Thus, the azimuth angles of the sun at sunset and sunrise satisfy: 

 

 
sin

arccos .
cos

sa




 
  

 
 (31) 
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Note that the times of sunrise and sunset occur at an equal number of hours before and after solar 

noon, respectively.  Similarly, the azimuth angles of sunrise and sunset equal in magnitude from 

south. 

 For example, on an equinoctial day, when the solar declination is zero, 0  , equation 

(28) indicates that sunrise and sunset occur at an hour angle of ±90º or, from (29), ±6 hours.  

Similarly, (31) indicates that the azimuth angles of the rising and setting sun are ±90º.  Thus, the 

sun rises at 6 hours before local solar noon (i.e., 6:00 hours, or 6:00 AM) in the direction that is 

+90º east of south (i.e., east), and it sets at 6 hours after local solar noon (i.e., 18:00 hours, or 

6:00 PM) in the direction that is –90º west of south (i.e., west).  If the only consideration were 

the equinoctial day, the only portion of the ellipse in Figure 21 needed for daylight hours is that 

above the east-west axis.  However, on other days daylight hours may extend beyond the 12 hour 

day from 6:00 AM to 6:00 PM, requiring that more of the ellipse be retained.  In fact, the day 

with the largest number of daylight hours is the day of the summer solstice when the solar decli-

nation is 23.45º.  Then, from (29), 7.35st   hours, so sunrise occurs at 4:39 AM, and sunset oc-

curs at 7:21 PM, and retaining portions of the ellipse below the east-west axis is desirable. 

 

2  Size of the sundial 

The parameter M  defining the semi-major axis controls the overall size of the analemmatic sun-

dial.  The average height of people who will cast the shadow is one consideration in selecting 

this sizing parameter.  As seen in Figure 15, the length of the shadow on any given day is short-

est at noon, when the solar elevation is greatest.  The noon shadow will in turn be shortest on a 

day when the noon sun achieves its highest elevation for the year.  This is at the summer solstice, 

June 21.  Let maxe  denote the maximum solar elevation at the location where the sundial will be 

placed.  From Eq. (18), 

 

 
 

  
max arcsin cos 23.45 cos0 cos sin 23.45 sin

arcsin cos 23.45 .

e  



 

 
 (32) 

 
 
The shortest shadow length, minl , is then  

 

 min maxtan ,l h e  (33) 

. 

where h is the height of the person casting the shadow.  One possible choice for sizing the sundi-

al is to select M  so that the minor axis of the sundial, sinm M  , is equal to
 minl , 

 

 maxtan
,

sin

h e
M


  (34) 

where   is the latitude of the place where the sundial is placed.  An average height, h , will need 

to be used in (34) because people with various heights will be using the sundial. 
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3.  Time Corrections 

Time marks placed on the ellipse of Figure 21 according to (26) indicate mean solar-time at the 

meridian where the sundial is to be placed.   Corrections must be applied to convert this time into 

the legal time indicated by clocks.  The necessary corrections are indicated in (21).  These are: a 

correction to account for the difference in longitude between the standard meridian of the time 

zone in which the sundial is to be located and the meridian of the sundial itself; the equation-of-

time correction, which converts mean solar-time into actual solar-time;  and, a one hour correc-

tion for daylight savings time if that is in effect.  These corrections can be incorporated into the 

design of the sundial in various ways.  The longitude correction can be incorporated into the de-

sign by replacing the hour-angle, τ, in (26) by  , where 

 

 
1

15
L    , (35) 

in which  
 

  local-meridian standard-meridianL   . (36) 
 

The resulting time marks are still labeled for the hour angle of τ.   The shadow cast by a vertical 

rod will then be at the 12:00 mark (i.e., τ = 0º) when the sun passes through the plane of the 

standard meridian.  If desired, the correction for daylight savings time can be incorporated into 

the design by labeling time marks with two times, one for standard time and the other for day-

light time.  Reading time on the sundial then requires that the user know whether or not daylight 

savings time is in effect and which of the two labels to use.  The equation-of-time correction can 

be incorporated, if desired, by either displaying a graph of the type in Figure 18 at the dial loca-

tion or an analemma of the type in Figure 19 along the north-south axis of the sundial at the date 

marks.  The user of the sundial must then incorporate this correction by adding (or subtracting) 

the correction read from the graph or analemma to the time indicated by the time mark at the 

shadow line. 

 
  

C.  Design of the Date Marks 

Suppose that sinm M   and that the time marks are placed on the ellipse of Figure 21 as de-

scribed in the preceding section.  On an equinoctial day, the shadow of a vertical rod placed at 

the origin of the ellipse will then fall on each time mark at the time indicated by that mark.  This 

will not be so on other days.  However, there is a date-dependent position along the north-south 

axis where the rod can be placed so that the shadow does intersect the time marks at the appro-

priate instant on a given date.  This position is found by consideration of Figure 22.  A vertical 

rod placed along the north-south axis at x = d casts a shadow towards 
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Figure 22  Vertical rod at date mark (x,y)=(d,0) casts a shadow towards point P on the ellipse when the sun is 

at azimuth angle a 

   

the time mark, τ, at point P on the ellipse with semi-major axis M and semi-minor axis 

sinm M  .  The equation for the shadow line is 

 

 
cos sin tan cos

cot ,
sin

x y a d y d
   




       (37) 

 

where the second equality is obtained using (19).  Now consider the dashed line in Figure 22 

from the origin to the point P.  This would be the shadow line of the rod if it were placed at the 

origin on an equinoctial day when 0  .  The equation for this line is 

 

 
cos sin

sin
x y

 


   (38) 

 

From (25).  The location of  P on the ellipse can be determined by substituting this expression 

for x into the equation of the ellipse 

 

 
2 2

2 2 2
1

sin

x y

M M
   (39) 

 

to get 

 

 
2 2 2 2

2 2 2 2

cot sin
1 1.

sin sin

y y

M M

 

 

 
   

 
 (40) 
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Therefore, the y-coordinate of P  is  

 

 sin ,Py M   (41) 

 

and from (38), the x-coordinate is 

 

 cos sin .Px M     (42) 

 

The choice of d  so that the shadow line of the rod at (d, 0) passes through P  is obtained from 

(37) by substituting    , ,P Px y x y  and using (41) and (42) to get: 

 

 
cos sin tan cos

cos sin sin ,
sin

M M d
   

  


 
    

 
 (43) 

 

which yields the following expression for the date mark: 

 

 tan cos .d M     (44) 

 

The date determines the solar declination, δ, and the location of the dial determines the latitude 

 .  The location determined by (44) is then labeled with the date.  Labels for any dates selected 

can be placed, but the common choices are the first day of each month.  If desired, the date of a 

special occasion, such as a birthday, wedding anniversary, or holiday, could be selected. 

 
 

D.  Summary of Analemmatic Sundial Design 

The steps to design an analemmatic sundial to be located on a flat, horizontal surface at a place 

with latitude   are: 

 Determine and lay out north-south and east-west oriented lines, with their intersection at 

the center of the site where the sundial is to be placed.  See Sec.  IV.A for determining 

the true north-south direction. 

 Select a scale M  for the sundial.  See Sec. IV.B.2 for guidelines on doing this. 

 Determine and lay out the ellipse of the sundial and time marks along the ellipse.  The 

property (4) of an ellipse provides one way to lay out the ellipse, as discussed below in 

Sec. VI.  Equation (26) is used for locating the time marks.  The extent of the ellipse and 

time marks need only include daylight hours.  See Sec. IV.B.1 for determining the times 

of sunrise and sunset and hence the span of daylight hours.  The time marks can be placed 

to include a time correction for the longitude of the location where the sundial is to be 

placed.  This correction is discussed in Sec. IV.B.3. 

 Determine and lay out the date marks along the north-south axis of the ellipse.  The loca-

tion of a date mark is determined by first determining the declination of the sun for the 

date, for example by using equation (20), and then using equation (44) of Sec. IV.C. 
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 Choose the artistic aspects of the sundial.  Consider including sundial decorations; see 

Sec. V below for some discussion of this. 

 Choose the materials and methods for constructing the sundial.  See Sec. VI for some 

discussion of this. 

 
 

E.  Example: A Design for St. Louis, MO 

As an example, consider the design of an analemmatic sundial for St. Louis, MO.  Assume that 

M = 1 for the design.  All dimensions in the dial can then be scaled for other choices of M.  It is 

desired to place time marks at all daylight hours.  The latitude of St. Louis, MO, is 38.6 degrees.  

The ellipse with time marks has a major axis of dimension M = 1 and is aligned with the east-

west direction at the location of the sundial.  The minor axis has dimension 

sin sin38.6 0.624m M     and is aligned with the north-south direction.  The ellipse is 

drawn in Figure 23.   

 Hourly time marks 5:00, 6:00, , 11:00, 12:00, 13:00, , 18:00, and 19:00 are placed 

on the ellipse at coordinates  ,x y  =  sin38.6 cos , sin    for the corresponding hour angles 

τ equal to 105 , 90 , , 15 , 0 , 15 , , 90 , and 105 , respectively.  These coordinates 

are given in the following table, and the time marks are indicated on the ellipse in Figure 23.   

They were determined using (26) with M = 1. 

 
 
 
 

time,  time mark coordinates 

hours degrees x y 

5:00 -105 +0.162 +0.966 

6:00 -90 0.000 +1.000 

7:00 -75 -0.162 +0.966 

8:00 -60 0.312 +0.866 

9:00 -45 -0.441 +0.707 

10:00 -30 -0.540 +0.500 

11:00 -15 -0.603 +0.259 

12:00 0 -0.624 0.000 

13:00 15 -0.603 -0.259 

14:00 30 -0.540 -0.500 

15:00 45 -0.441 -0.707 

16:00 60 -0.312 -0.866 

17:00 75 -0.162 -0.966 

18:00 90 -0.000 -1.000 

19:00 105 +0.162 -0.966 

 
 
 Fourteen date marks are placed along the north-south axis, indicating the first day of each 

month, the winter solstice December 21, and the summer solstice June 21.  The coordinates for 
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these marks were determined using (20) and (44).  They are given in the following table, and the 

date marks are indicated in Figure 23. 
 

date day number, N date mark, d 

January 1 1 +0.332 

February 1 32 +0.247 

March 1 60 +0.114 

April 1 91 -0.055 

May 1 121 -0.208 

June 1 152 -0.316 

June 21 172 -0.339 

July 1 182 -0.334 

August 1 213 -0.253 

September 1 244 -0.107 

October 1 274 +0.057 

November 1 305 +0.214 

December 1 335 +0.317 

December 21 355 +0.339 

 
 The ellipse of the sundial in Figure 23 is limited to the hours between 5:00 and 19:00.  

This range of hours was selected after examining the solar azimuth angles using (31) at sunrise 

and sunset. 
 

 

Figure 23  Analemmatic sundial for St. Louis, MO.  The solstice dates of  

June 21 and Dec. 21 are indicated by the red marks on the date line. 

Shown in Figure 24 are some shadow lines for the solstice and equinoctial days.  The lengths of 

the shadows of a one-meter rod placed at the appropriate date marks are indicated.  For a one 

meter rod, the length of the shadow is cot e , where e  is the elevation angle of the sun, as deter-
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mined by (18) for the date of interest.  The direction of the shadow is a + 180º, where a is the 

azimuth angle of the sun, as determined by (19) on the date of interest.  

 

 

Figure 24  Shadow line lengths for a one-meter rod placed at the winter solstice (Jan. 21, blue),  

summer solstice (Jun. 21, green), and equinoxes (Mar. 21, Sept. 21, red).  The shadow lines at 15:00 

hours are shown for each date, and the end points of the shadow lines for each date are shown 

for all hours. 

 

 This sundial indicates local mean-solar-time.  Its design does not account for the differ-

ence in the longitude of St. Louis, which is 90.3ºW and the standard meridian of the time zone in 

which St. Louis is located, which is 90º.  The time correction amounts to /15 0.02L    hours 

or +1.2 minutes.  For example, when the sundial indicates that the local mean-solar-time is 12:00 

noon, the mean-solar-time at the standard meridian of the time zone is 12:01:12.   If desired, the 

dial can be redesigned to indicate mean-solar-time at the standard meridian of the time zone by 

using 0.02    in place of   in (26).  The coordinates for the longitudinally corrected time 

marks are given in the following table, and the resulting sundial is shown in Figure 25.  There is 

only a minor difference between the sundials with and without longitude correction because the 

longitudes of St. Louis and the standard meridian of the time zone are close to one another.  

Times during periods when daylight savings time is in effect are indicated in red.  A graph of the 

equation-of-time is included so that clock time can be determined using (21). 
 
 

time time mark coordinates 

 , hours  , degrees x y 

5:00 -104.7 +0.158 +0.967 

6:00 -89.7 -0.003 +1.000 

7:00 -74.7 -0.165 +0.965 

8:00 -59.7 0.315 +0.863 

9:00 -44.7 -0.444 +0.703 
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10:00 -29.7 -0.542 +0.496 

11:00 -14.7 -0.604 +0.254 

12:00 0.3 -0.624 -0.005 

13:00 15.3 -0.603 -0.264 

14:00 30.3 -0.539 -0.505 

15:00 45.3 -0.439 -0.711 

16:00 60.3 -0.309 -0.869 

17:00 75.3 -0.158 -0.967 

18:00 90.3 +0.003 -1.000 

19:00 105.3 +0.165 -0.965 

 

 

Figure 25  Analemmatic sundial for St. Louis, MO, corrected for longitude and daylight savings time. 

 

V.  Sundial Decorations 

Various decorations, also called furniture, are commonly included on a sundial.  These include a 

graph of the equation-of-time or an analemma so that clock time can be determined from the 

time indicated by the sundial.  The graph of the EOT is often included on a plaque posted at or 

near the sundial.  The analemma is usually included on the sundial itself along with the date 

marks on the north-south axis of the sundial.  One caution in including the analemma in this way 

is that users of the sundial may be inclined to stand on the date mark on the analemma rather 

than the date mark on the north-south axis, which leads to incorrect time readings. 

 Other forms of furniture include mottos, emblems, date lines, and solar-event lines.  Mot-

tos often refer to time in some way.  There are many examples, such as: 

  Make every hour count 
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  Waste not time 

  Time waits for no one 

  Sunny hours are happy hours 

Lists of mottos that have been used are readily available; see, for example, 

http://www.sundials.co.uk/mottoes.htm.  An emblem may be included on a sundial to indicate its 

location or a special event it commemorates.   Figure 24 displays lines for the equinoctial and 

solstice days that indicate the end point of the shadow of a 1 meter rod throughout the course of 

these days of special solar events.  Such a line can be included for any date.  For example, the 

line for a holiday related to the commemoration of the sundial could be included, as could some-

one’s birthday or wedding day.  However, such lines may not be desirable for an analemmatic 

sundial because of the varying heights of its users.   

 

VI.  Construction Materials and Methods 

There are many options in constructing an analemmatic sundial once its ellipse, time marks, and 

date marks are designed.  There is a wide choice of materials that may be used.  The character of 

the sundial can be greatly affected by inventive, artistic choices in its implementation.  The ex-

amples in Figure 2 show a small sampling of the variety of possibilities of construction. 

 All implementations will require the determination of the direction of true north, laying 

out the axes of the sundial, drawing the ellipse, and placing the time and date marks.  A compass 

alone cannot be used to determine the direction of true north.  The deviation between magnetic 

and true north varies with location.  This deviation is indicated on some maps, and a compass 

can be used if this deviation information is available as well.  The direction of true north is easy 

to measure.  One method is to draw a circle with a vertical rod placed at its center.  The tip of the 

shadow of the rod will cross the circle once before noon and once after noon.  The perpendicular 

bisector of the line connecting these two crossover points is the true north-south axis of the sun-

dial.  The center of the ellipse that will form the sundial can then be marked along the north-

south axis, and the perpendicular line drawn at this center point will be the east-west axis of the 

ellipse.  The length of the semi-major and semi-minor axes of the ellipse, M and sinm M  , 

can then be marked.   Also, the two foci of the ellipse, 2 2 cosf M m M      , can be 

marked.  One approach for laying out the ellipse itself is to use the property of an ellipse in (4).  

The endpoints of a rope of length 2M  are secured at the foci of the ellipse.  A point P is the el-

lipse when the rope is stretched taut, as in Figure 4.  The ellipse can be marked out by moving 

the point P  to various locations while keeping the rope taut.  Time and date marks can be added 

by using a ruler to measure their coordinates along the north-south and east-west axes.     

 

VII.  Discussion and Conclusions 
The design of analemmatic sundials is based on predicting solar positions and the properties of 

ellipses.  The properties of ellipses are reviewed in Section II-A.  Earth-centered and place-

centered coordinate systems are used in predicting solar positions as the earth rotates about its 

axis while orbiting the sun.  These coordinate systems are reviewed in Section II-C.  Sundials 

indicate mean-solar-time, so corrections must be applied to obtain clock time from a sundial 

reading.  These corrections are discussed in Section III.  All of these ideas are brought together 

in the design of analemmatic sundials, as discussed in Section IV.     

http://www.sundials.co.uk/mottoes.htm
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